6 research outputs found
Volumetric trans-scale imaging of massive quantity of heterogeneous cell populations in centimeter-wide tissue and embryo
Ichimura Taro, Kakizuka Taishi, Sato Yuki, et al. Volumetric trans-scale imaging of massive quantity of heterogeneous cell populations in centimeter-wide tissue and embryo. eLife 493, 318 (2024); https://doi.org/10.7554/eLife.93633.We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of 2× and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a lateral spatial resolution of approximately 1.2 µm across an FOV of approximately 1.5 × 1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hours, visualizing the movement of over 4.0 × 105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine
BD5: An open HDF5-based data format to represent quantitative biological dynamics data.
BD5 is a new binary data format based on HDF5 (hierarchical data format version 5). It can be used for representing quantitative biological dynamics data obtained from bioimage informatics techniques and mechanobiological simulations. Biological Dynamics Markup Language (BDML) is an XML (Extensible Markup Language)-based open format that is also used to represent such data; however, it becomes difficult to access quantitative data in BDML files when the file size is large because parsing XML-based files requires large computational resources to first read the whole file sequentially into computer memory. BD5 enables fast random (i.e., direct) access to quantitative data on disk without parsing the entire file. Therefore, it allows practical reuse of data for understanding biological mechanisms underlying the dynamics