756 research outputs found

    Development of serum substitute medium for bone tissue engineering

    Get PDF
    In tissue engineering, cells are grown often on scaffolds and subjected to chemical/mechanical stimuli. Most such cultures still use fetal bovine serum (FBS) despite its known disadvantages including ethical concerns, safety issues, and variability in composition, which greatly influences the experimental outcomes. To overcome the disadvantages of using FBS, chemically defined serum substitute medium needs to be developed. Development of such medium depends on cell type and application—which makes it impossible to define one universal serum substitute medium for all cells in any application. Here, we developed a serum substitute medium for bone tissue engineering (BTE) in a step-by-step process. Essential components were added to the medium while human bone marrow mesenchymal stromal cells (hBMSCs, osteoblast progenitor cells) were cultured in two-dimensional and three-dimensional substrates. In a 3-week culture, the developed serum substitute medium worked equally well as FBS containing medium in term of cell attachment to the substrate, cell survival, osteoblast differentiation, and deposition of extracellular matrix. In the next step, the use of serum substitute medium was evaluated when culturing cells under mechanical loading in the form of shear stress. The outcomes showed that the application of shear stress is essential to improve extracellular matrix formation while using serum substitute medium. The developed serum substitute medium could pave the way in replacing FBS for BTE studies eliminating the use of controversial FBS and providing a better-defined chemical environment for BTE studies.</p

    Alkaline Phosphatase Activity of Serum Affects Osteogenic Differentiation Cultures

    Get PDF
    Fetal bovine serum (FBS) is a widely used supplement in cell culture medium, despite its known variability in composition, which greatly affects cellular function and consequently the outcome of studies. In bone tissue engineering, the deposited mineralized matrix is one of the main outcome parameters, but using different brands of FBS can result in large variations. Alkaline phosphatase (ALP) is present in FBS. Not only is ALP used to judge the osteogenic differentiation of bone cells, it may affect deposition of mineralized matrix. The present study focused on the enzymatic activity of ALP in FBS of different suppliers and its contribution to mineralization in osteogenic differentiation cultures. It was hypothesized that culturing cells in a medium with high intrinsic ALP activity of FBS will lead to higher mineral deposition compared to media with lower ALP activity. The used FBS types were shown to have significant differences in enzymatic ALP activity. Our results indicate that the ALP activity of the medium not only affected the deposited mineralized matrix but also the osteogenic differentiation of cells as measured by a changed cellular ALP activity of human-bone-marrow-derived mesenchymal stromal cells (hBMSCs). In media with low inherent ALP activity, the cellular ALP activity was increased and played the major role in the mineralization process, while in media with high intrinsic ALP activity contribution from the serum, less cellular ALP activity was measured, and the ALP activity of the medium also contributed to mineral formation substantially. Our results highlight the diverse effects of ALP activity intrinsic to FBS on osteogenic differentiation and matrix mineralization and how FBS can determine the experimental outcomes, in particular for studies investigating matrix mineralization. Once again, the need to replace FBS with more controlled and known additives is highlighted.</p

    Movement-induced orientation of collagen fibrils in cartilaginous tissues

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Whitaker College of Health Sciences and Technology, 1994.Includes bibliographical references (p. 167-174).by Keita Ito.Sc.D

    Allotriophagia of A Bundle of Dried Reeds, Sudden Death, and Colon Cancer: A Case Report

    Get PDF
    Introduction: Epilepsy patients sometimes exhibit abnormal behavior, such as allotriophagia. We experienced a case of allotriophagia of dried reeds, which resulted in massive vomitings and sudden death.Presentation of case: A 69-year-old man died after vomitings of a large amount of bloody solution. Autopsy revealed that sharp edge of a piece of dried reeds penetrated the whole layer of the colon at the oral edge of the colon cancer.Conclusion: A bundle of dried reeds stuck in the cancerous ulcer in the colon and induced massive bleeding

    Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering

    Get PDF
    Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent – assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested
    corecore