23 research outputs found

    豊橋創造大学図書・情報センターの設計について

    Get PDF

    Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis

    Get PDF
    Prokineticin 2 (PK2) is a secreted protein involved in several pathological and physiological processes, including the regulation of inflammation, sickness behaviors, and circadian rhythms. Recently, it was reported that PK2 is associated with the pathogenesis of collagen-induced arthritis in mice. However, the role of PK2 in the pathogenesis of rheumatoid arthritis (RA) or osteoarthritis (OA) remains unknown. In this study, we collected synovial tissue, plasma, synovial fluid, and synovial fibroblasts (SF) from RA and OA patients to analyze the function of PK2 using immunohistochemistry, enzyme-linked immunosorbent assays, and tissue superfusion studies. PK2 and its receptors prokineticin receptor (PKR) 1 and 2 were expressed in RA and OA synovial tissues. PKR1 expression was downregulated in RA synovial tissue compared with OA synovial tissue. The PK2 concentration was higher in RA synovial fluid than in OA synovial fluid but similar between RA and OA plasma. PK2 suppressed the production of IL-6 from TNFα-prestimulated OA-SF, and this effect was attenuated in TNFα-prestimulated RA-SF. This phenomenon was accompanied by the upregulation of PKR1 in OA-SF. This study provides a new model to explain some aspects underlying the chronicity of inflammation in RA

    アミオダロン ワ マウス ニ オケル ウイルスセイ シンキンエン ニ ヨル インターロイキン 6 ノ サンセイ オ ヨクセイシ シンキン ショウガイ オ ケイゲンスル

    No full text
    京都大学0048新制・課程博士博士(医学)甲第9829号医博第2533号新制||医||811(附属図書館)UT51-2003-B369京都大学大学院医学研究科内科系専攻(主査)教授 野間 昭典, 教授 米田 正始, 教授 北 徹学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Autocitrullination confers monocyte chemotactic properties to peptidylarginine deiminase 4

    No full text
    Abstract Peptidylarginine deiminase 4 (PAD4) contributes to the production of citrullinated proteins as autoantigens for anti-citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA). PAD4 can also self-deiminate via autocitrullination. However, the role of this process in RA pathogenesis has not been elucidated. This study aimed to clarify PAD4 function before and after autocitrullination and identify citrullinated PAD4 in the synovial fluid of patients with RA. The autocitrullination of recombinant human PAD4 (rhPAD4) was catalyzed in vitro and determined using anti-modified citrulline immunoblotting. Monocyte chemotaxis was evaluated using Boyden chambers, and citrullinated rhPAD4’s ability to induce arthritis was assessed in a C57BL/6J mouse model. Citrullinated PAD4 levels were measured in the synovial fluid of patients with RA and osteoarthritis using a novel enzyme-linked immunosorbent assay. Chemotactic findings showed that citrullinated rhPAD4 recruited monocytes in vitro, whereas unmodified rhPAD4 did not. Compared to unmodified rhPAD4, citrullinated rhPAD4 induced greater inflammation in mouse joints through monocyte migration. More citrullinated PAD4 was found in the synovial fluid of patients with RA than in those with osteoarthritis. Citrullinated PAD4 was even detected in ACPA-negative patients with RA. The autocitrullination of PAD4 amplified inflammatory arthritis through monocyte recruitment, suggesting an ACPA-independent role of PAD4 in RA pathogenesis

    Regulation of Th2 responses by different cell types expressing the interleukin-31 receptor

    No full text
    Abstract Background Interleukin-31 (IL-31) is a recently identified cytokine produced by Th2 cells that is involved in the development of atopic dermatitis-induced skin inflammation and pruritus. Its receptor, IL-31RA, is expressed by a number of cell types, including epithelial cells, eosinophils, and activated monocytes and macrophages. To date, however, the regulation of Th2 responses by distinct cell types and tissues expressing IL-31RA has not been well studied. Methods In this study, Cry j 2, one of the major allergens of Japanese cedar pollen, was administered to IL-31RA-deficient or wild-type (WT) mice via nasal or intraperitoneal injection for induction of specific Th2 responses. Results After nasal administration of Cry j 2, IL-31RA-deficient mice showed lower Cry j 2-specific CD4+ T cell proliferation, Th2 cytokine (IL-5 and IL-13) production, and Th2-mediated (IgE, IgG1, and IgG2b) antibody responses than WT mice. In contrast, IL-31RA-deficient mice administered Cry j 2 intraperitoneally showed stronger Th2 immune responses than WT mice. Conclusions These results indicate that IL-31R signaling positively regulates Th2 responses induced by nasal administration of Cry j 2, but negatively regulates these responses when Cry j 2 is administered intraperitoneally. Collectively, these data indicate that the induction of antigen-specific Th2 immune responses might depend on tissue-specific cell types expressing IL-31RA
    corecore