10 research outputs found
Short-term and long-term comparisons of laparoscopy-assisted proximal gastrectomy with esophagogastrostomy by the double-flap technique and laparoscopy-assisted total gastrectomy for proximal gastric cancer
Background
Although proximal gastrectomy (PG) is a recognized surgical procedure for early proximal gastric cancer, total gastrectomy (TG) is sometimes selected due to concern about severe gastroesophageal reflux. Esophagogastrostomy by the double-flap technique (DFT) is an anti-reflux reconstruction after PG, and its short-term effectiveness has been reported. However, little is known about the long-term effects on nutritional status and quality of life (QOL).
Methods
Gastric cancer patients who underwent laparoscopy-assisted PG (LAPG) with DFT or laparoscopy-assisted TG (LATG) between April 2011 and March 2014 were retrospectively analyzed. Body weight (BW), body mass index (BMI), and prognostic nutritional index (PNI) were reviewed to assess nutritional status, and the Postgastrectomy Syndrome Assessment Scale (PGSAS)-45 was used to assess QOL.
Results
A total of 36 patients (LATG: 17, LAPG: 19) were enrolled. Four of 17 LATG patients (24%) were diagnosed with Stage ≥II after surgery, and half received S-1 adjuvant chemotherapy. BW and PNI were better maintained in LAPG than in LATG patients until 1-year follow-up. Seven of 16 LATG patients (44%) were categorized as “underweight (BMI
Conclusions
LAPG with DFT was superior to LATG in postoperative nutritional maintenance, and can be the first option for early proximal gastric cancer
Extracellular vesicles shed from gastric cancer mediate protumor macrophage differentiation
Background
Peritoneal dissemination often develops in gastric cancer. Tumor-associated macrophages (TAMs) are present in the peritoneal cavity of gastric cancer patients with peritoneal dissemination, facilitating tumor progression. However, the mechanism by which macrophages differentiate into tumor-associated macrophages in the peritoneal cavity is not well understood. In this study, the interplay between gastric cancer-derived extracellular vesicles (EVs) and macrophages was investigated.
Methods
The association between macrophages and EVs in peritoneal ascitic fluid of gastric cancer patients, or from gastric cancer cell lines was examined, and their roles in differentiation of macrophages and potentiation of the malignancy of gastric cancer were further explored.
Results
Immunofluorescent assays of the ascitic fluid showed that M2 macrophages were predominant along with the cancer cells in the peritoneal cavity. EVs purified from gastric cancer cells, as well as malignant ascitic fluid, differentiated peripheral blood mononuclear cell-derived macrophages into the M2-like phenotype, which was demonstrated by their morphology and expression of CD163/206. The macrophages differentiated by gastric cancer-derived EVs promoted the migration ability of gastric cancer cells, and the EVs carried STAT3 protein.
Conclusion
EVs derived from gastric cancer play a role by affecting macrophage phenotypes, suggesting that this may be a part of the underlying mechanism that forms the intraperitoneal cancer microenvironment
Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis
Surgery is the only curative treatment option for pancreatic cancer, but patients often develop postoperative recurrence. Surgical invasiveness might be involved in the mechanism of recurrence. The associations among inflammation caused by surgery, neutrophils, and cancer metastasis were investigated. At first, neutrophil extracellular traps (NETs) were examined in clinical specimens, and NETs were observed around metastatic tumors. To explore how NETs were induced, neutrophils were cultured with pancreatic cancer or in cancer-conditioned medium. Neutrophils formed NETs when they were cultured with pancreatic cancer or even its conditioned medium. The effects of NETs on cancer cells were further investigated in vitro and in vivo. NETs induced the epithelial to mesenchymal transition in cancer cells and thereby promoted their migration and invasion. HMGB1 derived from NETs appeared to potentiate the malignancy of cancer cells. In a mouse model of liver metastasis with inflammation, NETs participated in the metastatic process by enhancing extravasation. Interestingly, thrombomodulin degraded HMGB1 and consequently inhibited the induction of NETs, thereby preventing pancreatic cancer metastasis to the liver. In conclusion, NETs interact reciprocally with pancreatic cancer cells, which play a pivotal role in inflammation-associated metastasis. Targeting NETs with thrombomodulin can be a novel strategy to improve the surgical outcome of pancreatic cancer patients
Intraperitoneal cancer-immune microenvironment promotes peritoneal dissemination of gastric cancer
A solid tumor consists of cancer and stromal cells, which comprise the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are usually abundant in the TME, contributing to tumor progression. In cases of peritoneal dissemination of gastric cancer (GC), the contribution of intraperitoneal TAMs remains unclear. Macrophages from peritoneal washings of GC patients were analyzed, and the link between intraperitoneal TAMs and GC cells was investigated to clarify the interaction between them in peritoneal dissemination. Macrophages were predominant among leukocytes constituting the microenvironment of the peritoneal cavity. The proportion of CD163-positive TAMs was significantly higher in stage IV than in stage I GC. Co-culture with TAMs potentiated migration and invasion of GC. IL-6 was the most increased in the medium of in vitro co-culture of macrophages and GC, and IL-6 elevation was also observed in the peritoneal washes with peritoneal dissemination. An elevated concentration of intraperitoneal IL-6 was correlated with a poor prognosis in clinical cases. In conclusion, intraperitoneal TAMs are involved in promoting peritoneal dissemination of GC via secreted IL-6. TAM-derived IL-6 could be a potential therapeutic target for peritoneal dissemination of GC
Laparoscopic repair of an abdominal incisional hernia above the pubis
Laparoscopic repair of a suprapubic hernia typically carries a high risk of recurrence, because fixation of the mesh in the peripubic area is difficult. We herein report a patient undergoing laparoscopic repair of a suprapubic hernia, along with a description of the surgical techniques employed.
A 78-year-old woman visited our hospital with a chief complaint of swelling at the median hypogastric incision site after surgery for an ovarian cyst performed at age 25 years. Laparoscopic examination revealed the hernia orifice to be 3.5×3.0 cm in size and that the distance between the caudal margin of the hernia orifice and the pubis was 2.5 cm. Parietex composite mesh was used for fixation through all layers of the abdominal wall with non-absorbable sutures and tack fixation. On the pubic side, after the pubis had been exposed by separating it from the bladder, we performed mesh fixation through all layers of the abdominal wall immediately above the pubis with the sutures placed inside the mesh, combined with tack mesh fixation directly to the pubis. This procedure enabled definite fixation of the mesh. Six days after surgery, she was discharged without complications. To date, two years and five months after surgery, no recurrence has been observed