7 research outputs found

    INFLUENCE OF BINDERS, MIX PROPORTIONS, AND FABRICATION METHOD ON THE CHARACTERISTICS OF FLY ASH AGGREGATE

    Get PDF
    In this paper, two types of lightweight fly ash (FA) aggregates: cold bonded fly ash (CFA) and sintered fly ash (SFA) aggregates were prepared through the cold bonding and sintering method. During the pelletization process, different ratios of binders to fly ash were used, i.e., 10:90, 15:85, 17:83, and 20:80 with a set amount of water. Cement, metakaolin, sodium silicate, urea-formaldehyde resin, bentonite powder, and phenol-formaldehyde resin were employed as binders. A comparative study on physicochemical, mechanical, phase identification, microstructure, and optical analysis of CFA and SFA was performed. The results showed that CFA (an alkali binder) had a higher water absorption (WA) value of 9,50 % with a crushing strength (CS) value of 6,30 MPa than SFA (sodium silicate binder) with a CS value of 5,80 MPa and a WA value of 10,28 %. Experimental observations also demonstrated that the leaching ability of SFA was considerably lower than that of CFA. Most notably, SFA can be used as a substitute for construction material and structural applications along with solving FA waste disposal and related problems to a considerable extent

    Hybrid Method for Endpoint Prediction in a Basic Oxygen Furnace

    No full text
    Strict monitoring and prediction of endpoints in a Basic Oxygen Furnace (BOF) are essential for end-product quality and overall process efficiency. Existing control models are mostly developed based on thermodynamic principles or by deploying advanced sensors. This article aims to propose a novel hybrid algorithm for endpoint temperature, carbon, and phosphorus, based on heat and mass balance and a data-driven technique. Three types of static models were established in this study: firstly, theoretical models, based on user-specified inputs, were formulated based on mass and energy balance; secondly, artificial neural networks (ANN) were developed for endpoints predictions; finally, the proposed hybrid model was established, based upon exchanging outputs among theoretical models and ANNs. Data of steelmaking production details collected from 28,000 heats from Tata Steel India were used for this article. Machine learning model validation was carried out with five-fold cross-validation to ensure generalizations in model predictions. ANNs are found to achieve better predictive accuracies than theoretical models in all three endpoints. However, they cannot be directly applied in any steelmaking plants, due to possible variations in the production setting. After applying the hybrid algorithm, normalized root mean squared errors are reduced for endpoint carbon and phosphorus by 3.7% and 9.77%

    Hybrid Method for Endpoint Prediction in a Basic Oxygen Furnace

    No full text
    Strict monitoring and prediction of endpoints in a Basic Oxygen Furnace (BOF) are essential for end-product quality and overall process efficiency. Existing control models are mostly developed based on thermodynamic principles or by deploying advanced sensors. This article aims to propose a novel hybrid algorithm for endpoint temperature, carbon, and phosphorus, based on heat and mass balance and a data-driven technique. Three types of static models were established in this study: firstly, theoretical models, based on user-specified inputs, were formulated based on mass and energy balance; secondly, artificial neural networks (ANN) were developed for endpoints predictions; finally, the proposed hybrid model was established, based upon exchanging outputs among theoretical models and ANNs. Data of steelmaking production details collected from 28,000 heats from Tata Steel India were used for this article. Machine learning model validation was carried out with five-fold cross-validation to ensure generalizations in model predictions. ANNs are found to achieve better predictive accuracies than theoretical models in all three endpoints. However, they cannot be directly applied in any steelmaking plants, due to possible variations in the production setting. After applying the hybrid algorithm, normalized root mean squared errors are reduced for endpoint carbon and phosphorus by 3.7% and 9.77%
    corecore