4 research outputs found

    Dynamics of a many-particle Landau-Zener model: inverse sweep

    Full text link
    We consider dynamics of a slowly time-dependent Dicke model, which represents a many-body generalization of the Landau-Zener model. In particular, the model describes narrow Feshbach resonance passage in an ultracold gas of Fermi atoms. Adiabaticity is destroyed when a parameter crosses a critical value, even at very slow sweeping rates of a parameter. The dynamics crucially depends on direction of the sweep. We apply our recent analysis [A.P. Itin, P. Torma, arXiv:0901.4778v1] to the "inverse" sweep through the resonance, corresponding (in a context of Feshbach resonance passage) to dissociation of molecules. On a level of the mean-field approximation, the dynamics is equivalent to a molecular condensate formation from Bose atoms within a two-mode model. Mapping the system to a Painlev\'e equation allows us to calculate deviation from adiabaticity at very slow sweeps analytically.Comment: 3 pages. Submitted to CEWQO 2009 on 14th Februar

    Near-adiabatic parameter changes in correlated systems: Influence of the ramp protocol on the excitation energy

    Get PDF
    We study the excitation energy for slow changes of the hopping parameter in the Falicov-Kimball model with nonequilibrium dynamical mean-field theory. The excitation energy vanishes algebraically for long ramp times with an exponent that depends on whether the ramp takes place within the metallic phase, within the insulating phase, or across the Mott transition line. For ramps within metallic or insulating phase the exponents are in agreement with a perturbative analysis for small ramps. The perturbative expression quite generally shows that the exponent depends explicitly on the spectrum of the system in the initial state and on the smoothness of the ramp protocol. This explains the qualitatively different behavior of gapless (e.g., metallic) and gapped (e.g., Mott insulating) systems. For gapped systems the asymptotic behavior of the excitation energy depends only on the ramp protocol and its decay becomes faster for smoother ramps. For gapless systems and sufficiently smooth ramps the asymptotics are ramp-independent and depend only on the intrinsic spectrum of the system. However, the intrinsic behavior is unobservable if the ramp is not smooth enough. This is relevant for ramps to small interaction in the fermionic Hubbard model, where the intrinsic cubic fall-off of the excitation energy cannot be observed for a linear ramp due to its kinks at the beginning and the end.Comment: 24 pages, 6 figure

    On quantum mean-field models and their quantum annealing

    Full text link
    This paper deals with fully-connected mean-field models of quantum spins with p-body ferromagnetic interactions and a transverse field. For p=2 this corresponds to the quantum Curie-Weiss model (a special case of the Lipkin-Meshkov-Glick model) which exhibits a second-order phase transition, while for p>2 the transition is first order. We provide a refined analytical description both of the static and of the dynamic properties of these models. In particular we obtain analytically the exponential rate of decay of the gap at the first-order transition. We also study the slow annealing from the pure transverse field to the pure ferromagnet (and vice versa) and discuss the effect of the first-order transition and of the spinodal limit of metastability on the residual excitation energy, both for finite and exponentially divergent annealing times. In the quantum computation perspective this quantity would assess the efficiency of the quantum adiabatic procedure as an approximation algorithm.Comment: 44 pages, 23 figure
    corecore