13 research outputs found

    Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Get PDF
    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and α-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[13C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective α-keto acids, utilizing α-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants

    Genetic mapping identifies loci that influence tomato resistance against Colorado potato beetles

    No full text
    "The Colorado potato beetle (CPB; Leptinotarsa decemlineata Say), the most economically important insect pest on potato (Solanum tuberosum L.), also feeds on other Solanaceae, including cultivated tomato (Solanum lycopersicum L.). We used tomato genetic mapping populations to investigate natural variation in CPB resistance. CPB bioassays with 74 tomato lines carrying introgressions of Solanum pennellii in S. lycopersicum cv. M82 identified introgressions from S. pennellii on chromosomes 1 and 6 conferring CPB susceptibility, whereas introgressions on chromosomes 1, 8 and 10 conferred higher resistance. Mapping of CPB resistance using 113 recombinant inbred lines derived from a cross between S. lycopersicum cv UC-204B and Solanum galapagense identified significant quantitative trait loci on chromosomes 6 and 8. In each case, the S. galapagense alleles were associated with lower leaf damage and reduced larval growth. Results of both genetic mapping approaches converged on the same region of chromosome 6, which may have important functions in tomato defense against CPB herbivory. Although genetic mapping identified quantitative trait loci encompassing known genes for tomato acyl sugar and glycoalkaloid biosynthesis, experiments with acyl sugar near-isogenic lines and transgenic GAME9 glycoalkaloid-deficient and overproducing lines showed no significant effect of these otherwise insect-defensive metabolites on CPB performance.

    HS-SPME-GC-MS Analyses of Volatiles in Plant Populations—Quantitating Compound × Individual Matrix Effects

    No full text
    Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–mass spectrometry (GC-MS) is widely employed for volatile analyses of plants, including mapping populations used in plant breeding research. Studies often employ a single internal surrogate standard, even when multiple analytes are measured, with the assumption that any relative changes in matrix effects among individuals would be similar for all compounds, i.e., matrix effects do not show Compound × Individual interactions. We tested this assumption using individuals from two plant populations: an interspecific grape (Vitis spp.) mapping population (n = 140) and a tomato (Solanum spp.) recombinant inbred line (RIL) population (n = 148). Individual plants from the two populations were spiked with a cocktail of internal standards (n = 6, 9, respectively) prior to HS-SPME-GC-MS. Variation in the relative responses of internal standards indicated that Compound × Individual interactions exist but were different between the two populations. For the grape population, relative responses among pairs of internal standards varied considerably among individuals, with a maximum of 249% relative standard deviation (RSD) for the pair of [U13C]hexanal and [U13C]hexanol. However, in the tomato population, relative responses of internal standard pairs varied much less, with pairwise RSDs ranging from 8% to 56%. The approach described in this paper could be used to evaluate the suitability of using surrogate standards for HS-SPME-GC-MS studies in other plant populations

    Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping

    Get PDF
    Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of >58000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and invitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of >12000 eQTL mapped for >8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs. Significance Statement: Fruit-quality traits of melon were studied by linking genotypic, metabolic and transcriptomic data from a recombinant inbred line population. High resolution RNA-Seq-based quantitative trait loci and expression-QTL analyses enabled the identification of two genes that affect aroma and color

    Sequencing-Based Bin Map Construction of a Tomato Mapping Population, Facilitating High-Resolution Quantitative Trait Loci Detection

    No full text
    Genotyping-by-sequencing (GBS) was employed to construct a highly saturated genetic linkage map of a tomato ( L.) recombinant inbred line (RIL) population, derived from a cross between cultivar NC EBR-1 and the wild tomato L. accession LA2093. A pipeline was developed to convert single nucleotide polymorphism (SNP) data into genomic bins, which could be used for fine mapping of quantitative trait loci (QTL) and identification of candidate genes. The pipeline, implemented in a python script named SNPbinner, adopts a hidden Markov model approach for calculation of recombination breakpoints followed by genomic bins construction. The total length of the newly developed high-resolution genetic map was 1.2-fold larger than previously estimated based on restriction fragment length polymorphism (RFLP) and polymerase chain reaction (PCR)–based markers. The map was used to verify and refine QTL previously identified for two fruit quality traits in the RIL population, fruit weight (FW) and fruit lycopene content (LYC). Two well-described FW QTL ( and ) were localized precisely at their known underlying causative genes, and the QTL intervals were decreased by two- to tenfold. A major QTL for LYC content () was verified at high resolution and its underlying causative gene was determined to be ζ (). The RIL population, the high resolution genetic map, and the easy-to-use genotyping pipeline, SNPbinner, are made publicly available

    Directly Monitoring Individual Retrovirus Budding Events Using Atomic Force Microscopy

    Get PDF
    Retrovirus budding is a key step in the virus replication cycle. Nonetheless, very little is known about the underlying mechanism of budding, primarily due to technical limitations preventing visualization of bud formation in real time. Methods capable of monitoring budding dynamics suffer from insufficient resolution, whereas other methods, such as electron microscopy, do not have the ability to operate under physiological conditions. Here we applied atomic force microscopy to real-time visualization of individual Moloney murine leukemia virus budding events. By using a single-particle analysis approach, we were able to observe distinct patterns in budding that otherwise remain transparent. We find that bud formation follows at least two kinetically distinct pathways. The majority of virions (74%) are produced in a slow process (>45 min), and the remaining particles (26%) assemble via a fast process (<25 min). Interestingly, repetitive budding from the same site was seen to occur in only two locations. This finding challenges the hypothesis that viral budding occurs from distinct sites and suggests that budding is not restricted laterally. In this study, we established a method to monitor the fine dynamics of the virus budding process. Using this single-particle analysis to study mutated viruses will enable us to gain additional insight into the mechanisms of viral budding

    Data from: The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor

    No full text
    Modern tomatoes have narrow genetic diversity limiting their improvement potential. We present a tomato pan-genome constructed using genome sequences of 725 phylogenetically and geographically representative accessions, revealing 4,873 genes absent from the reference genome. Presence/absence variation analyses reveal substantial gene loss and intense negative selection of genes and promoters during tomato domestication and improvement. Lost or negatively selected genes are enriched for important traits, especially disease resistance. We identify a rare allele in TomLoxC promoter selected against during domestication. QTL mapping and analysis of transgenic plants reveal a novel role for TomLoxC in apocarotenoid production, which contributes to desirable tomato flavor. In orange-stage fruit, accessions harboring both the rare and common TomLoxC alleles (heterozygotes) have higher TomLoxC expression than those homozygous for either, and are resurgent in modern tomatoes. The tomato pan-genome adds depth and completeness to the reference genome, and is useful for future biological discovery and breeding
    corecore