129 research outputs found

    Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles

    Get PDF
    Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological condition

    Thyroid hormones and the central nervous system of mammals (Review)

    Get PDF
    Abstract. The thyroid hormones (THs) L-thyroxine (T4) and L-triiodothyronine (T3) have a profound influence on the development and maturation of the mammalian brain, both before and after birth. Any impairment in the supply of THs to the developing nervous system leads to severe and irreversible changes in both the overall architecture and functions of the brain and causes, in humans, neurological and motor deficits known as cretinism. Pronounced neurological symptoms are also commonly observed in adult patients suffering from both hyperthyroidism and hypothyroidism, and it has recently emerged that certain symptoms might result from the reduced brain uptake, rather than the insufficient production, of THs. Most of the effects of THs are mediated by two classes of nuclear receptors (£\ and ß isoforms), which belong to the c-erbA superfamily of transcriptional regulators and are expressed in a tissue-specific and developmentally regulated manner. Interestingly, the nuclear TH receptors (nTRs) act as both ligand-independent gene repressors and ligand-dependent gene activators. On the other hand, negatively-regulated genes, which can be stimulated in the absence of THs and repressed by THs, have also been observed. Due to this complex pattern of regulation, the effects of receptor dysfunction do not exactly overlap the effects of hormone deficiency or excess. Moreover, non-genomic mechanisms of TH action have been described in many tissues, including the brain, some of which seem to be mediated by integrins and to be calcium-dependent. Intracellular receptors, distinct from nTRs, are present in the mitochondria, where a matrix-associated, T3-dependent transcriptional regulator of approximately 43 kDa has been described. Finally, complex patterns of pituitary and/or peripheral resistance to thyroid hormones (RTH), characterized by elevated plasma levels of THs and non-suppressible thyroidstimulating hormone (TSH), have been identified. This review summarizes the major advances in knowledge of the molecular mechanisms of TH action and their implication for the effects of THs on the developing, as well as the adult mammalian, nervous system. Contents 1. Introduction 2. Thyroid hormone supply to the fetus 3. General mechanisms of thyroid hormone action 4. Thyroid hormone synthesis, transport and uptake into the brain 5. Resistance to thyroid hormones 6. Thyroid hormone effects on the nervous system 7. Conclusion

    Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review).

    Get PDF
    Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5' or 3' to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3'-untranslated (3'-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs

    Involvement of the H3.3 Histone Variant in the Epigenetic Regulation of Gene Expression in the Nervous System, in Both Physiological and Pathological Conditions

    Get PDF
    All the cells of an organism contain the same genome. However, each cell expresses only a minor fraction of its potential and, in particular, the genes encoding the proteins necessary for basal metabolism and the proteins responsible for its specific phenotype. The ability to use only the right and necessary genes involved in specific functions depends on the structural organization of the nuclear chromatin, which in turn depends on the epigenetic history of each cell, which is stored in the form of a collection of DNA and protein modifications. Among these modifications, DNA methylation and many kinds of post-translational modifications of histones play a key role in organizing the complex indexing of usable genes. In addition, non-canonical histone proteins (also known as histone variants), the synthesis of which is not directly linked with DNA replication, are used to mark specific regions of the genome. Here, we will discuss the role of the H3.3 histone variant, with particular attention to its loading into chromatin in the mammalian nervous system, both in physiological and pathological conditions. Indeed, chromatin modifications that mark cell memory seem to be of special importance for the cells involved in the complex processes of learning and memory

    Genomic and non-genomic mechanisms of action of thyroid hormones and their catabolite 3,5-diiodo-l-thyronine in Mammals

    Get PDF
    Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their eects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic eects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic eects), THs also have non-genomic eects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic eects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic eects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug

    Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier

    Get PDF
    : The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions

    Lactate as a Metabolite and a Regulator in the Central Nervous System

    Get PDF
    More than two hundred years after its discovery, lactate still remains an intriguing molecule. Considered for a long time as a waste product of metabolism and the culprit behind muscular fatigue, it was then recognized as an important fuel for many cells. In particular, in the nervous system, it has been proposed that lactate, released by astrocytes in response to neuronal activation, is taken up by neurons, oxidized to pyruvate and used for synthesizing acetyl-CoA to be used for the tricarboxylic acid cycle. More recently, in addition to this metabolic role, the discovery of a specific receptor prompted a reconsideration of its role, and lactate is now seen as a sort of hormone, even involved in processes as complex as memory formation and neuroprotection. As a matter of fact, exercise offers many benefits for our organisms, and seems to delay brain aging and neurodegeneration. Now, exercise induces the production and release of lactate into the blood which can reach the liver, the heart, and also the brain. Can lactate be a beneficial molecule produced during exercise, and offer neuroprotection? In this review, we summarize what we have known on lactate, discussing the roles that have been attributed to this molecule over time

    Oligodendroglioma cells shed microvesicles which contain TRAIL as well as molecular chaperones and induce cell death in astrocytes.

    Get PDF
    Microvesicles (MVs) shed from G26/24 oligodendroglioma cells were previously reported to cause a reproducible, dose-dependent, inhibitory effect on neurite outgrowth, and eventually neuronal apoptosis, when added to primary cultures of rat cortical neurons. These effects were reduced but not abolished by functional monoclonal antibodies against Fas-L. In order to investigate whether MVs contain other factors able to induce cell death, we tested them for TRAIL and found clear evidence of its presence in the vesicles. This finding suggests the possibility that Fas-L and TRAIL cooperate in inducing brain cell death. Aimed at understanding the route through which the vesicles deliver their messages to the target cells, we labeled oligodendroglioma cells with radioactive methionine and then added the labeled vesicles shed from tumor cells to unlabeled astrocytes in culture. Here we report that labeled proteins were delivered to the test cells. In order to investigate whether astrocytes, like neurons, are sensitive to oligodendroglioma-derived vesicles, MVs were prepared from media conditioned by G26/24 oligodendroglioma cells and added to primary cultures of rat cortical astrocytes. These cells were clearly more resistant than neurons to microvesicle-induced damage: a high dose (40 µg) of shed MVs induced cell death in only about 40% of astrocytes. Finally, we demonstrated that Hsp70 is specifically enriched in MVs which also contain, even if at lower level, the Hsc70 constitutive chaperone

    Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins

    Get PDF
    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2

    3D cultures of primary astrocytes on Poly-L-lactic acid scaffolds

    Get PDF
    Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro tissues with morphological and functional features similar to the biological tissue of the human body. Polymeric materials can be used in contact with biological systems in replacing destroyed tissue by transplantation [1]. Several biopolymers, including poly L (lactic acid) (PLLA), have been used in biomedical applications to set scaffolds with ductile proprieties and biodegradation kinetics [2]. In particular, the PLLA scaffold topography mimics the natural extracellular matrix and makes it a good candidate for neural tissue engineering. We report about of 3D system the PLLA porous scaffolds prepared via thermally-induced phase separation (TIPS) [3], and utilized as substrate for primary rat astrocytes 3D growth. Interestingly astrocytes adapt well to these porous matrices, not only remaining on the surface, but also penetrating inside the scaffolds. They colonize the matrix acquiring a typical star-like morphology; they form cell contacts and, in addition produce EVs as in vivo [4]. These results suggest that the chosen conditions could be a good starting point for 3D brain culture systems. PLLA scaffolds could be further enriched to host two or three different brain cell types, in order to set an in vitro model of blood brain barrier. The future use of co-culture systems may be involved in drug delivery studies, and in the formulation of new therapeutic strategies for the treatment of neurological diseases. [1]Langer R, Vacanti JP. Tissue engineering. Science. 1993; 260: 920 [2]Nejati E, et al. Appl. Sci. Manuf. 2008; 39: 1589–1596 [3]Scaffaro R, et al. J. Mech. Behav. Biomed. Mater. 2016; 54:8-20 [4]Schiera G, et al. Biomed Res Int 2015: 152926, 201
    • …
    corecore