1,097 research outputs found

    Majorana meets Coxeter: Non-Abelian Majorana Fermions and Non-Abelian Statistics

    Full text link
    We discuss statistics of vortices having zero-energy non-Abelian Majorana fermions inside them. Considering the system of multiple non-Abelian vortices, we derive a non-Abelian statistics that differs from the previously derived non-Abelian statistics. The new non-Abelian statistics presented here is given by a tensor product of two different groups, namely the non-Abelian statistics obeyed by the Abelian Majorana fermions and the Coxeter group. The Coxeter group is a symmetric group related to the symmetry of polytopes in a high-dimensional space. As the simplest example, we consider the case in which a vortex contains three Majorana fermions that are mixed with each other under the SO(3) transformations. We concretely present the representation of the Coxeter group in our case and its geometrical expressions in the high-dimensional Hilbert space constructed from non-Abelian Majorana fermions.Comment: 6 pages, 4 figures, references added, published versio

    Color Glass Condensate and BFKL dynamics in deep inelastic scattering at small x

    Full text link
    The proton structure function F_2(x,Q^2) for x < 0.01 and 0.045< Q^2 < 45 GeV^2, measured in the deep inelastic scattering at HERA, can be well described within the framework of the Color Glass Condensate.Comment: 4 pages, 1 figure, incl. IOP style files. Talk given at the 17th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, CA USA, 11-17 Jan 200

    Non-Abelian statistics of vortices with non-Abelian Dirac fermions

    Full text link
    We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core, to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities, and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, a genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined non-locally by Majorana fermions located at two spatially separated vortices.Comment: 32 pages, no figures, v3: published versio

    Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations

    Get PDF
    We present an off-lattice, on-the-fly kinetic Monte Carlo (KMC) model for simulating stress-assisted diffusion and trapping of hydrogen by crystalline defects in iron. Given an embedded atom (EAM) potential as input, energy barriers for diffusion are ascertained on the fly from the local environments of H atoms. To reduce computational cost, on-the-fly calculations are supplemented with precomputed strain-dependent energy barriers in defect-free parts of the crystal. These precomputed barriers, obtained with high-accuracy density functional theory calculations, are used to ascertain the veracity of the EAM barriers and correct them when necessary. Examples of bulk diffusion in crystals containing a screw dipole and vacancies are presented. Effective diffusivities obtained from KMC simulations are found to be in good agreement with theory. Our model provides an avenue for simulating the interaction of hydrogen with cracks, dislocations, grain boundaries, and other lattice defects, over extended time scales, albeit at atomistic length scales

    Monte Carlo Renormalization Group Analysis of Lattice Ď•4\phi^4 Model in D=3,4D=3,4

    Full text link
    We present a simple, sophisticated method to capture renormalization group flow in Monte Carlo simulation, which provides important information of critical phenomena. We applied the method to D=3,4D=3,4 lattice Ď•4\phi^4 model and obtained renormalization flow diagram which well reproduces theoretically predicted behavior of continuum Ď•4\phi^4 model. We also show that the method can be easily applied to much more complicated models, such as frustrated spin models.Comment: 13 pages, revtex, 7 figures. v1:Submitted to PRE. v2:considerably reduced redundancy of presentation. v3:final version to appear in Phys.Rev.
    • …
    corecore