15 research outputs found

    Classical Bound for Mach-Zehnder Super-Resolution

    Full text link
    The employment of path entangled multiphoton states enables measurement of phase with enhanced precision. It is common practice to demonstrate the unique properties of such quantum states by measuring super-resolving oscillations in the coincidence rate of a Mach-Zehnder interferometer. Similar oscillations, however, have also been demonstrated in various configurations using classical light only; making it unclear what, if any, are the classical limits of this phenomenon. Here we derive a classical bound for the visibility of super-resolving oscillations in a Mach-Zehnder. This provides an easy to apply, fundamental test of non-classicality. We apply this test to experimental multiphoton coincidence measurements obtained using photon number resolving detectors. Mach-Zehnder super-resolution is found to be a highly distinctive quantum effect.Comment: 4 pages, 4 figure, Comments welcom

    Spectral Polarization and Spectral Phase Control of Time and Energy Entangled Photons

    Get PDF
    We demonstrate a scheme to spectrally manipulate a collinear, continuous stream of time and energy entangled photons to generate beamlike, bandwidth-limited fuxes of polarization-entangled photons with nearly-degenerate wavelengths. Utilizing an ultrashort-pulse shaper to control the spectral phase and polarization of the photon pairs, we tailor the shape of the Hong-Ou-Mandel interference pattern, demonstrating the rules that govern the dependence of this interference pattern on the spectral phases of the photons. We then use the pulse shaper to generate all four polarization Bell states. The singlet state generated by this scheme forms a very robust decoherence-free subspace, extremely suitable for long distance fiber-optics based quantum communication.Comment: 5 pages, 3 figure

    Sub-Rayleigh lithography using high flux loss-resistant entangled states of light

    Full text link
    Quantum lithography achieves phase super-resolution using fragile, experimentally challenging entangled states of light. We propose a scalable scheme for creating features narrower than classically achievable, with reduced use of quantum resources and consequently enhanced resistance to loss. The scheme is an implementation of interferometric lithography using a mixture of an SPDC entangled state with intense classical coherent light. We measure coincidences of up to four photons mimicking multiphoton absorption. The results show a narrowing of the interference fringes of up to 30% with respect to the best analogous classical scheme using only 10% of the non-classical light required for creating NOON states.Comment: 5 pages, 4 figure

    Void Formation and Roughening in Slow Fracture

    Full text link
    Slow crack propagation in ductile, and in certain brittle materials, appears to take place via the nucleation of voids ahead of the crack tip due to plastic yields, followed by the coalescence of these voids. Post mortem analysis of the resulting fracture surfaces of ductile and brittle materials on the ÎŒ\mum-mm and the nm scales respectively, reveals self-affine cracks with anomalous scaling exponent ζ≈0.8\zeta\approx 0.8 in 3-dimensions and ζ≈0.65\zeta\approx 0.65 in 2-dimensions. In this paper we present an analytic theory based on the method of iterated conformal maps aimed at modelling the void formation and the fracture growth, culminating in estimates of the roughening exponents in 2-dimensions. In the simplest realization of the model we allow one void ahead of the crack, and address the robustness of the roughening exponent. Next we develop the theory further, to include two voids ahead of the crack. This development necessitates generalizing the method of iterated conformal maps to include doubly connected regions (maps from the annulus rather than the unit circle). While mathematically and numerically feasible, we find that the employment of the stress field as computed from elasticity theory becomes questionable when more than one void is explicitly inserted into the material. Thus further progress in this line of research calls for improved treatment of the plastic dynamics.Comment: 15 pages, 20 figure

    On Randomized Online Labeling with Polynomially Many Labels

    No full text
    corecore