76 research outputs found
Formation of "Lightnings" in a Neutron Star Magnetosphere and the Nature of RRATs
The connection between the radio emission from "lightnings" produced by the
absorption of high-energy photons from the cosmic gamma-ray background in a
neutron star magnetosphere and radio bursts from rotating radio transients
(RRATs) is investigated. The lightning length reaches 1000 km; the lightning
radius is 100 m and is comparable to the polar cap radius. If a closed
magnetosphere is filled with a dense plasma, then lightnings are efficiently
formed only in the region of open magnetic field lines. For the radio emission
from a separate lightning to be observed, the polar cap of the neutron star
must be directed toward the observer and, at the same time, the lightning must
be formed. The maximum burst rate is related to the time of the plasma outflow
from the polar cap region. The typical interval between two consecutive bursts
is ~100 s. The width of a single radio burst can be determined both by the
width of the emission cone formed by the lightning emitting regions at some
height above the neutron star surface and by a finite lightning lifetime. The
width of the phase distribution for radio bursts from RRATs, along with the
integrated pulse width, is determined by the width of the bundle of open
magnetic field lines at the formation height of the radio emission. The results
obtained are consistent with the currently available data and are indicative of
a close connection between RRATs, intermittent pulsars, and extreme nullers.Comment: 24 pages, no figures, references update
Recommended from our members
Oxygen diffusion in Sr<sub>0.75</sub>Y<sub>0.25</sub>CoO<sub>2.625</sub>: a molecular dynamics study
Oxygen diffusion in Sr0.75Y0.25CoO2.625 is investigated using molecular dynamics simulations in conjunction with an established set of Born model potentials. We predict an activation energy of diffusion for 1.56 eV in the temperature range of 1000-1400 K. We observe extensive disordering of the oxygen ions over a subset of lattice sites. Furthermore, oxygen ion diffusion both in the a-b plane and along the c axis requires the same set of rate-limiting ion hops. It is predicted that oxygen transport in Sr0.75Y0.25CoO2.625 is therefore isotropic
Absorption of Gamma-Ray Photons in a Vacuum Neutron Star Magnetosphere: I. Electron-Positron Pair Production
The production of electron-positron pairs in a vacuum neutron star
magnetosphere is investigated for both low (compared to the Schwinger one) and
high magnetic fields. The case of a strong longitudinal electric field where
the produced electrons and positrons acquire a stationary Lorentz factor in a
short time is considered. The source of electron-positron pairs has been
calculated with allowance made for the pair production by curvature and
synchrotron photons. Synchrotron photons are shown to make a major contribution
to the total pair production rate in a weak magnetic field. At the same time,
the contribution from bremsstrahlung photons may be neglected. The existence of
a time delay due to the finiteness of the electron and positron acceleration
time leads to a great reduction in the electron-positron plasma generation rate
compared to the case of a zero time delay. The effective local source of
electron-positron pairs has been constructed. It can be used in the
hydrodynamic equations that describe the development of a cascade after the
absorption of a photon from the cosmic gamma-ray background in a neutron star
magnetosphere.Comment: 29 pages, 1 figur
On the possible observational manifestation of supernova shock impact on the neutron star magnetosphere
Impact of supernova explosion on the neutron star magnetosphere in a massive
binary system is considered. The supernova shock striking the NS magnetosphere
filled with plasma can lead to the formation of a magnetospheric tail with
significant magnetic energy. The magnetic field reconnection in the current
sheet formed can convert the magnetic energy stored in the tail into kinetic
energy of accelerated charged particles. Plasma instabilities excited by beams
of relativistic particles can lead to the formation of a short pulse of
coherent radio emission with parameters similar to those of the observed bright
extragalactic millisecond radio burst (Lorimer et al. 2007).Comment: 8 pages, Astron. Lett. in pres
On the Possibility of the Detection of Extinct Radio Pulsars
We explore the possibilities for detecting pulsars that have ceased to
radiate in the radio band. We consider two models: the model with hindered
particle escape from the pulsar surface (first suggested by Ruderman and
Sutherland 1975) and the model with free particle escape (Arons 1981; Mestel
1999). In the model with hindered particle escape, the number of particles that
leave the pulsar magnetosphere is small and their radiation cannot be detected
with currently available instruments. At the same time, for the free particle
escape model, both the number of particles and the radiation intensity are high
enough for such pulsars to be detectable with the presently available receivers
such as GLAST and AGILE spacecrafts. It is also possible that extinct radio
pulsars can be among the unidentified EGRET sources.Comment: 5 pages, 1 figure corrected version of the paper that was published
in Astronomy Letter
Determination of the geometry of the PSR B1913+16 system by geodetic precession
New observations of the binary pulsar B1913+16 are presented. Since 1978 the
leading component of the pulse profile has weakend dramatically by about 40%.
For the first time, a decrease in component separation is observed, consistent
with expectations of geodetic precession. Assuming the correctness of general
relativity and a circular hollow-cone like beam, a fully consistent model for
the system geometry is developed. The misalignment angle between pulsar spin
and orbital momentum is determined giving direct evidence for an asymmetric
kick during the second supernova explosion. It is argued that the orbital
inclination angle is 132\fdg8 (rather than 47\fdg2). A prediction of this
model is that PSR B1913+16 will not be observable anymore after the year 2025.Comment: 16 pages, incl. 5 figures, accepted for publication in Ap
Utilization of photon orbital angular momentum in the low-frequency radio domain
We show numerically that vector antenna arrays can generate radio beams which
exhibit spin and orbital angular momentum characteristics similar to those of
helical Laguerre-Gauss laser beams in paraxial optics. For low frequencies (< 1
GHz), digital techniques can be used to coherently measure the instantaneous,
local field vectors and to manipulate them in software. This opens up for new
types of experiments that go beyond those currently possible to perform in
optics, for information-rich radio physics applications such as radio
astronomy, and for novel wireless communication concepts.Comment: 4 pages, 5 figures. Changed title, identical to the paper published
in PR
- …