4 research outputs found

    First identification of Microsporidia MB in Anopheles coluzzii from Zinder City, Niger

    No full text
    Abstract Background Malaria, a disease transmitted by Anopheles mosquitoes, is a major public health problem causing millions of deaths worldwide, mostly among children under the age of 5 years. Biotechnological interventions targeting parasite-vector interactions have shown that the microsporidian symbiont Microsporidia MB has the potential to disrupt and block Plasmodium transmission. Methods A prospective cross-sectional survey was conducted in Zinder City (Zinder), Niger, from August to September 2022, using the CDC light trap technique to collect adult mosquitoes belonging to the Anopheles gambiae complex. The survey focused on collecting mosquitoes from three neighborhoods of Zinder (Birni, Kangna and Garin Malan, located in communes I, II and IV, respectively). Collected mosquitoes were sorted and preserved in 70% ethanol. PCR was used to identify host species and detect the presence of Microsporidia MB and Plasmodium falciparum infection. Results Of the 257 Anopheles mosquitoes collected and identified by PCR, Anopheles coluzzii was the most prevalent species, accounting for 97.7% of the total. Microsporidia MB was exclusively detected in A. coluzzii, with a prevalence of 6.8% (17/251) among the samples. No significant difference in prevalence was found among the three neighborhoods. Only one An. coluzzii mosquito tested PCR-positive for P. falciparum. Conclusions The results confirm the presence of Microsporidia MB in Anopheles mosquitoes in Zinder, Niger, indicating its potential use as a biotechnological intervention against malaria transmission. However, further studies are needed to determine the efficacy of Microsporidia MB to disrupt Plasmodium transmission as well as its impact on vector fitness. Graphical Abstrac

    Insecticide resistance in Anopheles gambiae sensu lato (Diptera: Culicidae) across different agroecosystems in Niamey, Niger

    No full text
    International audienceMalaria vector control in Niger is currently based on the distribution of insecticide treated nets. However, vectors resistance to insecticides represents a major threat to the current national strategy against malaria. This study aims to characterize the impact of agroecosystems on insecticide resistance in Anopheles gambiae s.l. at Niamey. Larvae collected were reared until emergence. Adults aged 2-5 days were used to assess susceptibility to insecticides (pyrethroids, DDT and bendiocarb) after pre-exposure to piperonyl butoxide (PBO) synergist according to WHO protocols. PCRs were performed to identify the sibling species of An. gambiae complex and characterization resistance mutations (Kdr and ace-1). Overall, An. gambiae s.l. was resistance to pyrethroids and DDT (mortality rates from 1% to 55%) and susceptible to bendiocarb at most sites. Pre-exposure to the PBO synergist resulted in partial restoration of pyrethroid susceptibility. Two species of An. gambiae complex were found: An. arabiensis and An. coluzzii. The presence of An. coluzzii was strongly correlated with agricultural practices (99% in rice cultivation sites). Kdr mutations were found at all sites with kdr-w ranging from 45% to 70% in mosquitoes collected in unirrigated and rice field, respectively, and kdr-e found at 37% to 47% at each type of site, respectively. The ace-1 mutation was detected at low frequency (1%) and only from two rice cultivation sites. The high levels of pyrethroid and DDT resistance detected in Niamey had a strong link with rice cultivation, shown that agriculture is a driver of resistance that can compromise control malaria efforts

    Plasmodium falciparum kelch13 polymorphisms identified after treatment failure with artemisinin-based combination therapy in Niger

    No full text
    Abstract Background Artemisinin-based combination therapy (ACT) is the most effective treatment for malaria, and has significantly reduced morbimortality. Polymorphisms associated with the Plasmodium falciparum Kelch gene (Pfkelch13) have been associated with delayed parasite clearance even with ACT treatment. Methods The Pfkelch13 gene was sequenced from P. falciparum infected patients (n = 159) with uncomplicated malaria in Niger. An adequate clinical and parasitological response (ACPR) was reported in 155 patients. Four (n = 4) patients had treatment failure (TF) that were not reinfections—two of which had late parasitological failures (LPF) and two had late clinical failures (LCF). Results Thirteen single nucleotide polymorphisms (SNPs) were identified of which seven were non-synonymous (C469R, T508S, R515T, A578S, I465V, I437V, F506L,), and three were synonymous (P443P, P715P, L514L). Three SNP (C469R, F506L, P715P) were present before ACT treatment, while seven mutations (C469R, T508S, R515T, L514L, P443P, I437V, I465V) were selected by artemether/lumefantrine (AL)—five of which were non-synonymous (C469R, T508S, R515T, I437V, I465V). Artesunate/amodiaquine (ASAQ) has selected any mutation. One sample presented three cumulatively non-synonymous SNPs—C469R, T508S, R515T. Conclusions This study demonstrates intra-host selection of Pfkelch13 gene by AL. The study highlights the importance of LCF and LPF parasites in the selection of resistance to ACT. Further studies using gene editing are required to confirm the potential implication of resistance to ACT with the most common R515T and T508S mutations. It would also be important to elucidate the role of cumulative mutations

    Age-based targeting of biannual azithromycin distribution for child survival in Niger: an adaptive cluster-randomized trial protocol (AVENIR)

    No full text
    Background: biannual distribution of azithromycin to children 1–59 months old reduced mortality by 14% in a cluster-randomized trial. The World Health Organization has proposed targeting this intervention to the subgroup of children 1–11 months old to reduce selection for antimicrobial resistance. Here, we describe a trial designed to determine the impact of age-based targeting of biannual azithromycin on mortality and antimicrobial resistance. Methods: AVENIR is a cluster-randomized, placebo-controlled, double-masked, response-adaptive large simple trial in Niger. During the 2.5-year study period, 3350 communities are targeted for enrollment. In the first year, communities in the Dosso region will be randomized 1:1:1 to 1) azithromycin 1–11: biannual azithromycin to children 1–11 months old with placebo to children 12–59 months old, 2) azithromycin 1–59: biannual azithromycin to children 1–59 months old, or 3) placebo: biannual placebo to children 1–59 months old. Regions enrolled after the first year will be randomized with an updated allocation based on the probability of mortality in children 1–59 months in each arm during the preceding study period. A biannual door-to-door census will be conducted to enumerate the population, distribute azithromycin and placebo, and monitor vital status. Primary mortality outcomes are defined as all-cause mortality rate (deaths per 1000 person-years) after 2.5 years from the first enrollment in 1) children 1–59 months old comparing the azithromycin 1–59 and placebo arms, 2) children 1–11 months old comparing the azithromycin 1–11 and placebo arm, and 3) children 12–59 months in the azithromycin 1–11 and azithromycin 1–59 arms. In the Dosso region, 50 communities from each arm will be followed to monitor antimicrobial resistance. Primary resistance outcomes will be assessed after 2 years of distributions and include 1) prevalence of genetic determinants of macrolide resistance in nasopharyngeal samples from children 1–59 months old, and 2) load of genetic determinants of macrolide resistance in rectal samples from children 1–59 months old. Discussion: as high-mortality settings consider this intervention, the results of this trial will provide evidence to support programmatic and policy decision-making on age-based strategies for azithromycin distribution to promote child survival. Trial registration: This trial was registered on January 13, 2020 (clinicaltrials.gov: NCT04224987).</p
    corecore