25 research outputs found

    Intracranial Administration of P Gene siRNA Protects Mice from Lethal Chandipura Virus Encephalitis

    Get PDF
    Background: In parts of India, Chandipura Virus (CHPV) has emerged as an encephalitis causing pathogen in both epidemic and sporadic forms. This pediatric disease follows rapid course leading to 55–75 % mortality. In the absence of specific treatment, effectiveness of RNA interference (RNAi) was evaluated. Methods and Findings: Efficacy of synthetic short interfering RNA (siRNA) or short hairpin RNA (shRNA) in protecting mice from CHPV infection was assessed. The target genes were P and M genes primarily because important role of the former in viral replication and lethal nature of the latter. Real time one step RT-PCR and plaque assay were used for the assessment of gene silencing. Using pAcGFP1N1-CHPV-P, we showed that P-2 siRNA was most efficient in reducing the expression of P gene in-vitro. Both quantitative assays documented 2logs reduction in the virus titer when P-2, M-5 or M-6 siRNAs were transfected 2hr post infection (PI). Use of these siRNAs in combination did not result in enhanced efficiency. P-2 siRNA was found to tolerate four mismatches in the center. As compared to five different shRNAs, P-2 siRNA was most effective in inhibiting CHPV replication. An extended survival was noted when mice infected intracranially with 100 LD 50 CHPV were treated with cationic lipid complexed 5 mg P-2 siRNA simultaneously. Infection with 10LD 50 and treatment with two doses of siRNA first, simultaneously and second 24 hr PI, resulted in 70 % survival. Surviving mice showed 4logs less CHPV titers in brain without histopathological changes or antibody response. Gene expression profiles of P-2 siRNA treated mice showed no interferon response. First dose of siRNA at 2h

    Adult generation of glutamatergic olfactory bulb interneurons

    Full text link
    The adult mouse subependymal zone (SEZ) harbors neural stem cells that are thought to exclusively generate GABAergic interneurons of the olfactory bulb. We examined the adult generation of glutamatergic juxtaglomerular neurons, which had dendritic arborizations that projected into adjacent glomeruli, identifying them as short-axon cells. Fate mapping revealed that these originate from Neurog2- and Tbr2-expressing progenitors located in the dorsal region of the SEZ. Examination of the progenitors of these glutamatergic interneurons allowed us to determine the sequential expression of transcription factors in these cells that are thought to be hallmarks of glutamatergic neurogenesis in the developing cerebral cortex and adult hippocampus. Indeed, the molecular specification of these SEZ progenitors allowed for their recruitment into the cerebral cortex after a lesion was induced. Taken together, our data indicate that SEZ progenitors not only produce a population of adult-born glutamatergic juxtaglomerular neurons, but may also provide a previously unknown source of progenitors for endogenous repair
    corecore