63 research outputs found
Conformally coupled dark matter
Dark matter is obtained from a scalar field coupled conformally to
gravitation; the scalar being a relict of Dirac's gauge function. This
conformally coupled dark matter includes a gas of very light () neutral bosons having spin 0, as well as a
time-dependent global scalar field, both pervading all of the cosmic space. The
time-development of this dark matter in the expanding F-R-W universe is
investigated, and an acceptable cosmological behaviour is obtained.Comment: LaTEX File 10 pages, no figure
Creation of fundamental particles in Wesson's IMT
Fundamental particles, regarded as the constituents of quarks and leptons,
are described classicaly in the framework of the Weyl-Dirac version of Wesson's
Induced Matter Theory. There are neutral particles and particles having charge
Q=+/-(1/3e). The particles appear on the 4D brane, our universe, and are filled
with a substance induced by the 5D bulk. This substace is taken to have mass
density, charge density, pressure and is characterized by the prematter eq. of
state P+\rho=0. The interior is separated from the surrounding vacuum by a
boundary surface where the 4D metric tensor satisfies an a'la Schwarzschild
condition. Outside of the boundary holds the Schwarzschild, or the
Reissner-Nordstroem Metric, while the particles are characterized by mass,
radius, charge.Comment: 29 pages. Submitted for publication in the Gen. Rel. and Grav.
Journa
A Weyl-Dirac Cosmological Model with DM and DE
In the Weyl-Dirac (W-D) framework a spatially closed cosmological model is
considered. It is assumed that the space-time of the universe has a chaotic
Weylian microstructure but is described on a large scale by Riemannian
geometry. Locally fields of the Weyl connection vector act as creators of
massive bosons having spin 1. It is suggested that these bosons, called
weylons, provide most of the dark matter in the universe. At the beginning the
universe is a spherically symmetric geometric entity without matter. Primary
matter is created by Dirac's gauge function very close to the beginning. In the
early epoch, when the temperature of the universe achieves its maximum,
chaotically oriented Weyl vector fields being localized in micro-cells create
weylons. In the dust dominated period Dirac's gauge function is giving rise to
dark energy, the latter causing the cosmic acceleration at present. This
oscillatory universe has an initial radius identical to the Plank length =
1.616 exp (-33) cm, at present the cosmic scale factor is 3.21 exp (28) cm,
while its maximum value is 8.54 exp (28) cm. All forms of matter are created by
geometrically based functions of the W-D theory.Comment: 25 pages. Submitted to GR
Massive Electrodynamics and Magnetic Monopoles
Including torsion in the geometric framework of the Weyl-Dirac theory we
build up an action integral, and obtain from it a gauge covariant (in the Weyl
sense) general relativistic massive electrodynamics. Photons having an
arbitrary mass, electric, and magnetic currents (Dirac's monopole) coexist
within this theory. Assuming that the space-time is torsionless, taking the
photons mass zero, and turning to the Einstein gauge we obtain Maxwell's
electrodynamics.Comment: LaTex File, 9 pages, no figure
Wesson's IMT with a Weylian bulk
The foundations of Wesson's induced matter theory are analyzed. It is shown
that the 5D empty bulk must be regarded rather as a Weylian space than as a
Riemannian one.The framework of a Weyl-Dirac version of Wesson's theory is
elaborated and discussed. The bulk possesses in addition to the metric tensor a
Weylian connection vector as well Dirac's gauge function; there are no sources
(mass, current) in the bulk. On the 4D brane one obtains a geometrically based
unified theory of gravitation and electromagnetism with mass, currents and
equations induced by the 5D bulkComment: 29 page
Laparoscopic diagnostic peritoneal lavage (L-DPL): A method for evaluation of penetrating abdominal stab wounds
BACKGROUND: The management of penetrating abdominal stab wounds has been the subject of continued reappraisal and controversy. In the present study a novel method which combines the use of diagnostic laparoscopy and DPL, termed laparoscopic diagnostic peritoneal lavage (L-DPL) is described METHOD: Five trauma patients with penetrating injuries to the lower chest or abdomen were included. Standard videoscopic equipment is utilized for the laparoscopic trauma evaluation of the injured patient. When no significant injury is detected, the videoscope is withdrawn and 1000 mL of normal saline is infused through the abdominal trochar into the peritoneal cavity, and the effluent fluid studied for RBCs, WBC, amylase debry, bile as it is uced in regular diagnostic peritoneal lavage RESULTS: Laparoscopic peritoneal lavage (L-DPL) was then performed and proved to be negative in all 5 patients. RBC lavage counts above 100,000/mcrl were not considered as a positive lavage result, because the bleeding source was directly observed and controlled laparoscopically. All patients recovered uneventfully and were released within 3 days. This procedure combines the visual advantages of laparoscopy together with the sensitivity and specificty of DPL for the diagnosis of significant penetrating intra-abdominal injury, when the diagnostic strategy of selective consevatism for abdominal stab wounds is adopted. CONCLUSION: A method of laparoscopic diagnostic peritoneal lavage (L-DPL) in hemodynamically stable patients with penetrating lower thoracic or abdominal stab wounds is described. The method is especially applicable for trauma surgeons with only basic experience in laparoscopic technique. This procedure is used to obtain conclusive evidence of significant intra-abdominal injury, confirm peritoneal penetration, control intra-abdominal bleeding, and repair lacerations to the diaphragm and abdominal wall. The combination of laparoscopy and DPL afforded by the L-DPL method adds to the sensitivity and specificity of DPL, and avoids under or over sesitivty, that have limited the use of DPL in the hemodynamically stable trauma patients with suspicious or proven peritoneal penetration
Dark Matter Gravitational Interactions
We argue that the conjectured dark mater in the Universe may be endowed with
a new kind of gravitational charge that couples to a short range gravitational
interaction mediated by a massive vector field. A model is constructed that
assimilates this concept into ideas of current inflationary cosmology. The
model is also consistent with the observed behaviour of galactic rotation
curves according to Newtonian dynamics. The essential idea is that stars
composed of ordinary (as opposed to dark matter) experience Newtonian forces
due to the presence of an all pervading background of massive gravitationally
charged cold dark matter. The novel gravitational interactions are predicted to
have a significant influence on pre-inflationary cosmology. The precise details
depend on the nature of a gravitational Proca interaction and the description
of matter. A gravitational Proca field configuration that gives rise to
attractive forces between dark matter charges of like polarity exhibits
homogeneous isotropic eternal cosmologies that are free of cosmological
curvature singularities thus eliminating the horizon problem associated with
the standard big-bang scenario. Such solutions do however admit dense hot
pre-inflationary epochs each with a characteristic scale factor that may be
correlated with the dark matter density in the current era of expansion. The
model is based on a theory in which a modification of Einsteinian gravity at
very short distances can be expressed in terms of the gradient of the Einstein
metric and the torsion of a non-Riemannian connection on the bundle of linear
frames over spacetime. Indeed we demonstrate that the genesis of the model
resides in a remarkable simplification that occurs when one analyses the
variational equations associated with a broad class of non-Riemannian actions.Comment: 40 pages, 4 Postscript figure
Fermion confinement induced by geometry
We consider a five-dimensional model in which fermions are confined in a
hypersurface due to an interaction with a purely geometric field. Inspired by
the Rubakov-Shaposhnikov field-theoretical model, in which massless fermions
can be localized in a domain wall through the interaction of a scalar field, we
show that particle confinement may also take place if we endow the
five-dimensional bulk with a Weyl integrable geometric structure, or if we
assume the existence of a torsion field acting in the bulk. In this picture,
the kind of interaction considered in the Rubakov-Shaposhnikov model is
replaced by the interaction of fermions with a geometric field, namely a Weyl
scalar field or a torsion field. We show that in both cases the confinement is
independent of the energy and the mass of the fermionic particle. We generalize
these results to the case in which the bulk is an arbitrary n-dimensional
curved space.Comment: 8 page
The unexpected resurgence of Weyl geometry in late 20-th century physics
Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was
withdrawn by its author from physical theorizing in the early 1920s. It had a
comeback in the last third of the 20th century in different contexts: scalar
tensor theories of gravity, foundations of gravity, foundations of quantum
mechanics, elementary particle physics, and cosmology. It seems that Weyl
geometry continues to offer an open research potential for the foundations of
physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep
2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur
Conformally flat spacetimes and Weyl frames
We discuss the concepts of Weyl and Riemann frames in the context of metric
theories of gravity and state the fact that they are completely equivalent as
far as geodesic motion is concerned. We apply this result to conformally flat
spacetimes and show that a new picture arises when a Riemannian spacetime is
taken by means of geometrical gauge transformations into a Minkowskian flat
spacetime. We find out that in the Weyl frame gravity is described by a scalar
field. We give some examples of how conformally flat spacetime configurations
look when viewed from the standpoint of a Weyl frame. We show that in the
non-relativistic and weak field regime the Weyl scalar field may be identified
with the Newtonian gravitational potential. We suggest an equation for the
scalar field by varying the Einstein-Hilbert action restricted to the class of
conformally-flat spacetimes. We revisit Einstein and Fokker's interpretation of
Nordstr\"om scalar gravity theory and draw an analogy between this approach and
the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as
viewed in the Weyl frame and address the question of quantizing a conformally
flat spacetime by going to the Weyl frame.Comment: LATEX - 18 page
- …