4,560 research outputs found
Molecular Gas in the Bulge and Ring of NGC 7331
Maps of the J=2-1 12CO emission from the SbII galaxy NGC 7331 show a
low-contrast ring at a radius of about 3.5 kpc. There is no evidence for a
pronounced central hole in the CO distribution as claimed by others. The
molecular ring is just outside the radius of peak emission from warm dust, but
coincides with the peak of colder dust emission. Various 12CO and 13CO
transitions have been observed from three positions including the center, which
was also observed in the 492 GHz transition. The line measurements have been
modelled by emission from a clumpy mixture of low-density molecular gas at
about T(kin) = 10 K and high-density molecular gas at temperatures of 10 K and
20 K. The CO to H2 conversion factor in NGC 7331 is lower than that in the
Milky Way, and lowest in the center of NGC 7331. The total interstellar gas
mass is dominated by molecular hydrogen in the bulge and in the ring, and by
atomic hydrogen outside the ring. Total hydrogen mass densities in the ring are
about twice those in the bulge. Total gas to dynamic mass ratios increase from
1% in the bulge to 3% outside the ring. The bulge molecular gas may have
originated in mass loss from bulge stars, in which case the molecular ring is
probably the consequence of evacuation efficiency decreases at the outer bulge
edge.Comment: 12 pages, 4 figures, A&A in pres
HCN versus HCO+ as dense molecular gas mass tracer in Luminous Infrared Galaxies
It has been recently argued that the HCN J=1--0 line emission may not be an
unbiased tracer of dense molecular gas (\rm n\ga 10^4 cm^{-3}) in Luminous
Infrared Galaxies (LIRGs: ) and HCO J=1--0
may constitute a better tracer instead (Graci\'a-Carpio et al. 2006), casting
doubt into earlier claims supporting the former as a good tracer of such gas
(Gao & Solomon 2004; Wu et al. 2006). In this paper new sensitive HCN J=4--3
observations of four such galaxies are presented, revealing a surprisingly wide
excitation range for their dense gas phase that may render the J=1--0
transition from either species a poor proxy of its mass. Moreover the
well-known sensitivity of the HCO abundance on the ionization degree of the
molecular gas (an important issue omitted from the ongoing discussion about the
relative merits of HCN and HCO as dense gas tracers) may severely reduce
the HCO abundance in the star-forming and highly turbulent molecular gas
found in LIRGs, while HCN remains abundant. This may result to the decreasing
HCO/HCN J=1--0 line ratio with increasing IR luminosity found in LIRGs, and
casts doubts on the HCO rather than the HCN as a good dense molecular gas
tracer. Multi-transition observations of both molecules are needed to identify
the best such tracer, its relation to ongoing star formation, and constrain
what may be a considerable range of dense gas properties in such galaxies.Comment: 16 pages, 4 figures, Accepted for publication in the Astrophysical
Journa
Detection of Neutral Carbon in the M 31 Dark Cloud D478
Emission from the 492 GHz CI tranition was detected towards the dark cloud
D478 in M31. Using existing 12CO and 13CO measurements, models for the gas
properties of D478 are discussed. The observed CO and C line ratios can be
explained by two-component models (dense cores and tenuous envelopes);
single-density models appear less likely. The models indicate temperatures
T(kin) = 10 K. The beam-averaged C column density is 0.3 - 0.8 times that of
CO, whereas the total carbon to hydrogen ratio N(C)/N(H) = 5-3 times 10**-4.
The resulting CO-to-H2 conversion factor X is about half that of the Solar
Neighbourhood. With temperatures of about 10 K and projected mass densities of
5-10 M(sun)/pc**2 there appears to be no need to invoke the presence of very
cold and very massive clouds. Rather, D478 appears to be comparable to Milky
Way dark cloud complexes such as the Taurus-Auriga dark cloud complex.Comment: 7 Pages, 1 Figure; accepted by A&
A low-mass HI companion of NGC 1569?
High-sensitivity maps of the large-scale structure of atomic hydrogen in the
starburst dwarf galaxy NGC 1569 show evidence for an HI cloud with a mass of
7*10**6 M_sun, at a projected distance of 5 kpc from the parent galaxy. This
cloud may be a condensation in a low-column-density HI halo or a companion
galaxy/HI-cloud. NGC 1569 and its companion are connected by a low surface
brightness HI bridge. At the edge of NGC1569, the HI bridge coincides with
H_alpha arcs, also detected in soft X-rays.Comment: 5 pages, 4 figures, 1 tabl
The excitation of near-infrared H2 emission in NGC 253
Because of its large angular size and proximity to the Milky Way, NGC 253, an
archetypal starburst galaxy, provides an excellent laboratory to study the
intricacies of this intense episode of star formation. We aim to characterize
the excitation mechanisms driving the emission in NGC 253. Specifically we aim
to distinguish between shock excitation and UV excitation as the dominant
driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line
tracers. Using SINFONI observations, we create linemaps of Br\gamma,
[FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of
the gas and stellar gas velocity field, we find a kinematic center in agreement
with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2
transitions can be used as a diagnostic to discriminate between shock and
fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as
several other H_2 line ratios and the morphological comparison between H_2 and
Br\gamma and [FeII], we find that excitation from UV photons is the dominant
excitation mechanisms throughout NGC 253. We employ a diagnostic energy level
diagram to quantitatively differentiate between mechanisms. We compare the
observed energy level diagrams to PDR and shock models and find that in most
regions and over the galaxy as a whole, fluorescent excitation is the dominant
mechanism exciting the H_2 gas. We also place an upper limit of the percentage
of shock excited H_2 at 29%. We find that UV radiation is the dominant
excitation mechanism for the H_2 emission. The H_2 emission does not correlate
well with Br\gamma but closely traces the PAH emission, showing that not only
is H_2 fluorescently excited, but it is predominately excited by slightly lower
mass stars than O stars which excite Br\gamma, such as B stars
Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies
We present fluxes in both neutral carbon [CI] lines at the centers of 76
galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with
Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3,
J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can
be used to characterize the molecular ISM of the parent galaxies in simple ways
and how the molecular gas properties define the model results. In most
starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic
star-forming regions, and it is correlated to the total FIR luminosity. The
[CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux
ratios are also correlated, and trace the excitation of the molecular gas. In
the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by
dense and moderately warm gas clouds that appear to have low [C]/[CO] and
[13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds
at lower densities becomes progressively more important, and a multiple-phase
analysis is required to determine consistent physical characteristics. Neither
the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2
column densities in individual galaxies, and X(CI) conversion factors are not
superior to X(CO) factors. The methods and diagnostic diagrams outlined in this
paper also provide a new and relatively straightforward means of deriving the
physical characteristics of molecular gas in high-redshift galaxies up to z=5,
which are otherwise hard to determine
- …