819 research outputs found
Multiview 3D reconstruction in geosciences
Multiview three-dimensional (3D) reconstruction is a technology that allows the creation of 3D models of a given scenario from a series of overlapping pictures taken using consumer-grade digital cameras. This type of 3D reconstruction is facilitated by freely available software, which does not require expert-level skills. This technology provides a 3D working environment, which integrates sample/field data visualization and measurement tools. In this study, we test the potential of this method for 3D reconstruction of decimeter-scale objects of geological interest. We generated 3D models of three different outcrops exposed in a marble quarry and two solids: a volcanic bomb and a stalagmite. Comparison of the models obtained in this study using the presented method with those obtained using a precise laser scanner shows that multiview 3D reconstruction yields models that present a root mean square error/average linear dimensions between 0.11 and 0.68%. Thus this technology turns out to be an extremely promising tool, which can be fruitfully applied in geosciences
Analysis of the vertices and with light-cone QCD sum rules
In this article, we study the vertices and with the light-cone
QCD sum rules. The strong coupling constants and play an
important role in understanding the final-state re-scattering effects in the
hadronic B decays. They are related to the basic parameters and
respectively in the heavy quark effective Lagrangian, our numerical
values are smaller than the existing estimations.Comment: 16 pages, 6 figures, revised versio
Facial Asymmetry Detected with 3D Methods in Orthodontics: A Systematic Review
Background: Historically, the development of two-dimensional (2D) imaging techniques forerun that of three-dimensional (3D) ones. Some 2D methods are still considered valid and effective to diagnose facial asymmetry but 3D techniques may provide more precise and accurate measurements.
Objective: The aim of this work is to analyze the accuracy and reliability of the imaging techniques available for the diagnosis of facial asymmetry in orthodontics and find the most reliable.
Methods: A search strategy was implemented using PubMed (National Library of Medicine, NCBI).
Results: A total of 3201 papers were identified in electronic searches. 90 articles, available in full text, were included in the qualitative synthesis consisting of 8 reviews on the diagnosis of facial asymmetry, 22 in vivo and in vitro studies on 2D methods and 60 in vivo and in vitro studies on 3D methods to quantify the asymmetry.
Conclusion: 2D techniques include X-ray techniques such as posterior-anterior cephalogram, which still represents the first level exam in the diagnosis of facial asymmetry. 3D techniques represent the second level exam in the diagnosis of facial asymmetry. The most current used techniques are CBCT, stereophotogrammetry, laser scanning, 3D optical sensors and contact digitization. The comparison between bilateral parameters (linear distances, angles, areas, volumes and contours) and the calculation of an asymmetry index represent the best choices for clinicians who use CBCT. The creation of a color-coded distance map seems to represent the most accurate, reliable and validated methods for clinicians who use stereophotogrammetry, laser scanning and 3D optical sensors
Geometric dynamical observables in rare gas crystals
We present a detailed description of how a differential geometric approach to
Hamiltonian dynamics can be used for determining the existence of a crossover
between different dynamical regimes in a realistic system, a model of a rare
gas solid. Such a geometric approach allows to locate the energy threshold
between weakly and strongly chaotic regimes, and to estimate the largest
Lyapunov exponent. We show how standard mehods of classical statistical
mechanics, i.e. Monte Carlo simulations, can be used for our computational
purposes. Finally we consider a Lennard Jones crystal modeling solid Xenon. The
value of the energy threshold turns out to be in excellent agreement with the
numerical estimate based on the crossover between slow and fast relaxation to
equilibrium obtained in a previous work by molecular dynamics simulations.Comment: RevTeX, 19 pages, 6 PostScript figures, submitted to Phys. Rev.
Charming penguins in B => K* pi, K (rho,omega,phi) decays
We evaluate the decays B => K* pi, K (rho,omega,phi) adding the long distance
charming penguin contributions to the short distance: Tree+Penguin amplitudes.
We estimate the imaginary part of the charming penguin by an effective field
theory inspired by the Heavy Quark Effective Theory and parameterize its real
part. The final results for branching ratios depend on only two real parameters
and show a significant role of the charming penguins. The overall agreement
with the available experimental data is satisfactory.Comment: 13 pages, 1 figur
Development of Feline Immunodeficiency Virus ORF-A (tat) Mutants: In Vitro and in Vivo Characterization
AbstractA functional ORF-A is essential for efficient feline immunodeficiency virus replication in lymphocytes. We have characterized a series of mutants of the Petaluma strain, derived from p34TF10 and having different combinations of stop codons and increasingly long deletions in ORF-A. Six clones proved fully replicative in fibroblastoid Crandell feline kidney cells and monocyte-derived macrophage cultures but failed to replicate in T cell lines and primary lymphoblasts. Cats inoculated with three selected mutants had considerably milder infections than controls given intact ORF-A virus. In vivo, the mutants maintained growth properties similar to those in vitro for at least 7 months, except that replication in lymphoid cells was strongly reduced but not ablated. One mutant underwent extensive ORF-A changes without, however, reverting to wild-type. Antiviral immune responses were feeble in all cats, suggesting that viral loads were too low to represent a sufficiently powerful antigenic stimulus
- …