1,296 research outputs found

    Modeling the electronic behavior of γ\gamma-LiV2O5: a microscopic study

    Full text link
    We determine the electronic structure of the one-dimensional spin-1/2 Heisenberg compound γ\gamma-LiV2_2O5_5, which has two inequivalent vanadium ions, V(1) and V(2), via density-functional calculations. We find a relative V(1)-V(2) charge ordering of roughly 70:3070:30. We discuss the influence of the charge ordering on the electronic structure and the magnetic behavior. We give estimates of the basic hopping matrix elements and compare with the most studied α\alpha '-NaV2_2O5_5.Comment: Final version. To appear in Phys. Rev. Let

    Electronic Structure of Ladder Cuprates

    Full text link
    We study the electronic structure of the ladder compounds (SrCa)CuO 14-24-41 and SrCuO 123. LDA calculations for both give similar Cu 3d-bands near the Fermi energy. The hopping parameters estimated by fitting LDA energy bands show a strong anisotropy between the t_perp t_par intra-ladder hopping and small inter-ladder hopping. A downfolding method shows that this anisotropy arises from the ladder structure.The conductivity perpendicular to the ladders is computed assuming incoherent tunneling giving a value close to experiment.Comment: 5 pages, 3 figure

    Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9

    Full text link
    We have performed ab-initio calculations of exchange couplings in the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9. The uniform susceptibility of the Heisenberg model with these exchange couplings is then calculated by quantum Monte Carlo method; it agrees well with the experimental measurements. Based on our results we naturally explain the unusual magnetic properties of these materials, especially the huge difference in spin gap between CaV2O5 and MgV2O5, the unusual long range order in CaV3O7 and the "plaquette resonating valence bond (RVB)" spin gap in CaV4O9

    Cosmic ray tests of a GEM-based TPC prototype operated in Ar-CF4-isobutane gas mixtures

    Full text link
    Argon with an admixture of CF4 is expected to be a good candidate for the gas mixture to be used for a time projection chamber (TPC) in the future linear collider experiment because of its small transverse diffusion of drift electrons especially under a strong magnetic field. In order to confirm the superiority of this gas mixture over conventional TPC gases we carried out cosmic ray tests using a GEM-based TPC operated mostly in Ar-CF4-isobutane mixtures under 0 - 1 T axial magnetic fields. The measured gas properties such as gas gain and transverse diffusion constant as well as the observed spatial resolution are presented.Comment: 22 pages, 18 figures. Published in Nuclear Instruments and Methods in Physics Research A. Fig. 3 in the introduction was corrected since it had not been properly normalized. Minor corrections and no changes in the conclusio

    X-Ray flares in Orion Young Stars. II. Flares, Magnetospheres, and Protoplanetary Disks

    Full text link
    We study the properties of powerful X-ray flares from 161 pre-main sequence (PMS) stars observed with the Chandra X-ray Observatory in the Orion Nebula region. Relationships between flare properties, protoplanetary disks and accretion are examined in detail to test models of star-disk interactions at the inner edge of the accretion disks. Previous studies had found no differences in flaring between diskfree and accreting systems other than a small overall diminution of X-ray luminosity in accreting systems. The most important finding is that X-ray coronal extents in fast-rotating diskfree stars can significantly exceed the Keplerian corotation radius, whereas X-ray loop sizes in disky and accreting systems do not exceed the corotation radius. This is consistent with models of star-disk magnetic interaction where the inner disk truncates and confines the PMS stellar magnetosphere. We also find two differences between flares in accreting and diskfree PMS stars. First, a subclass of super-hot flares with peak plasma temperatures exceeding 100 MK are preferentially present in accreting systems. Second, we tentatively find that accreting stars produce flares with shorter durations. Both results may be consequences of the distortion and destabilization of the stellar magnetosphere by the interacting disk. Finally, we find no evidence that any flare types, even slow-rise flat-top flares are produced in star-disk magnetic loops. All are consistent with enhanced solar long-duration events with both footprints anchored in the stellar surface.Comment: Accepted for publication in ApJ (07/17/08); 46 pages, 14 figures, 2 table

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los

    Charge exchange neutral particle analysis with natural diamond detectors on LHD heliotron

    Get PDF
    Semiconductor detectors based on natural diamonds have been installed on the Large Helical Device (LHD) heliotron to measure the energy distribution of charge exchange fast neutral particles from different viewing angles. Advantages of a natural diamond detector (NDD) are (1) very compact size, (2) relatively easy handling, and (3) high energy resolution. Although NDDs are sensitive to visible light, vacuum ultraviolet, and soft x rays, unfavorable pulses produced by such radiation were greatly reduced by choosing an appropriate stainless steel shield in this experiment. In LHD, the time-resolved energy distribution of counter-going beam ions and ion cyclotron range of frequency-produced energetic ions have been successfully obtained by means of an NDD. The performance of NDDs as a neutral particle analyzer and its good suitability to LHD plasmas were demonstrated throughout this work

    Electronic structure and exchange interactions of the ladder vanadates CaV2O5 and MgV2O5

    Full text link
    We have performed ab-initio calculations of the electronic structure and exchange couplings in the layered vanadates CaV2O5 and MgV2O5. Based on our results we provide a possible explanation of the unusual magnetic properties of these materials, in particular the large difference in the spin gap between CaV2O5 and MgV2O5

    Novel Charge Order and Superconductivity in Two-Dimensional Frustrated Lattice at Quarter Filling

    Full text link
    Motivated by the various physical properties observed in θ\theta-(BEDT-TTF)2_2X, we study the ground state of extended Hubbard model on two-dimensional anisotropic triangular lattice at 1/4-filling with variational Monte Carlo method. It is shown that the nearest-neighbor Coulomb interaction enhances the charge fluctuation and it induces the anomalous state such as charge-ordered metallic state and the triplet next-nearest-neighbor ff-wave superconductivity. We discuss the relation to the real materials and propose the unified view of the family of θ\theta-(BEDT-TTF)2_2X.Comment: 4 pages, 5 figure

    Extension and its characteristics of ECRH plasma in the LHD

    Full text link
    One of the main objectives of the LHD is to extend the plasma confinement database for helical systems and to demonstrate such extended plasma confinement properties to be sustained in steady state. Among the various plasma parameter regimes, the study of confinement properties in the collisionless regime is of particular importance. Electron cyclotron resonance heating (ECRH) has been extensively used for these confinement studies of the LHD plasma from the initial operation. The system optimizations including the modification of the transmission and antenna system are performed with the special emphasis on the local heating properties. As the result, central electron temperature of more than 10 keV with the electron density of 0.6 x 1019^{19} m3^{-3} is achieved near the magnetic axis. The electron temperature profile is characterized by a steep gradient similar to those of an internal transport barrier observed in tokamaks and stellarators. 168 GHz ECRH system demonstrated efficient heating at over the density more than 1.0 x 1020^{20} m3^{-3}. CW ECRH system is successfully operated to sustain 756 s discharge.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France
    corecore