7 research outputs found

    Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future

    No full text
    There is a growing interest in green hydrogen, with researchers, institutions, and countries focusing on its development, efficiency improvement, and cost reduction. This paper explores the concept of green hydrogen and its production process using renewable energy sources in several leading countries, including Australia, the European Union, India, Canada, China, Russia, the United States, South Korea, South Africa, Japan, and other nations in North Africa. These regions possess significant potential for “green” hydrogen production, supporting the transition from fossil fuels to clean energy and promoting environmental sustainability through the electrolysis process, a common method of production. The paper also examines the benefits of green hydrogen as a future alternative to fossil fuels, highlighting its superior environmental properties with zero net greenhouse gas emissions. Moreover, it explores the potential advantages of green hydrogen utilization across various industrial, commercial, and transportation sectors. The research suggests that green hydrogen can be the fuel of the future when applied correctly in suitable applications, with improvements in production and storage techniques, as well as enhanced efficiency across multiple domains. Optimization strategies can be employed to maximize efficiency, minimize costs, and reduce environmental impact in the design and operation of green hydrogen production systems. International cooperation and collaborative efforts are crucial for the development of this technology and the realization of its full benefits

    Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile

    No full text
    Advances in PV technology have given rise to the increasing integration of PV-based distributed generation (PVDG) systems into distribution systems to mitigate the dependence on one power source and alleviate the global warming caused by traditional power plants. However, high power output coming from intermittent PVDG can create reverse power flow, which can cause an increase in system power losses and a distortion in the voltage profile. Therefore, the appropriate placement and sizing of a PVDG coupled with an energy storage system (ESS) to stock power during off-peak hours and to inject it during peak hours are necessary. Within this context, a new methodology based on an optimal power flow management strategy for the optimal allocation and sizing of PVDG systems coupled with battery energy storage (PVDG-BES) systems is proposed in this paper. To do this, this problem is formulated as an optimization problem where total real power losses are considered as the objective function. Thereafter, a new optimization technique combining a genetic algorithm with various chaotic maps is used to find the optimal PVDG-BES placement and size. To test the robustness and applicability of the proposed methodology, various benchmark functions and the IEEE 14-bus distribution network under fixed and intermittent load profiles are used. The simulation results prove that obtaining the optimal size and placement of the PVDG-BES system based on an optimal energy management strategy (EMS) presents better performance in terms of power losses reduction and voltage profile amelioration. In fact, the total system losses are reduced by 20.14% when EMS is applied compared with the case before integrating PVDG-BES

    Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review

    No full text
    Combined economic emission dispatch (CEED) problems are among the most crucial problems in electrical power systems. The purpose of the CEED is to plan the outputs of all production units available in the electrical power system in such a way that the cost of fuel and polluted emissions are minimized while respecting the equality and inequality constraints of the system and efficiently responding to the power load required. The rapid depletion of these sources causes limitation and increases the price of fuel. It is therefore very important that scientific research in the last few decades has been oriented toward the integration of renewable energy systems (RES) such as wind and PV as an alternative source. Furthermore, the CEED problem including RES is the most important problem with regard to electrical power field optimization. In this study, a classification of optimization techniques that are widely used, such as traditional methods, non-conventional methods, and hybrid methods, is summarized. Many optimization methods have been presented and each of them has its own advantages and disadvantages for solving this complex CEED problem, including renewable energy. A review of different optimization techniques for solving this CEED problem is explored in this present paper. This review will encourage researchers in the future to gain knowledge of the best approaches applicable to solve CEED problems for practical electrical systems

    Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods

    No full text
    The use of FACTS devices in power systems has become increasingly popular in recent years, as they offer a number of benefits, including improved voltage profile, reduced power losses, and increased system reliability and safety. However, determining the optimal type, location, and size of FACTS devices can be a challenging optimization problem, as it involves mixed integer, nonlinear, and nonconvex constraints. To address this issue, researchers have applied various optimization techniques to determine the optimal configuration of FACTS devices in power systems. The paper provides an in-depth and comprehensive review of the various optimization techniques that have been used in published works in this field. The review classifies the optimization techniques into four main groups: classical optimization techniques, metaheuristic methods, analytic methods, and mixed or hybrid methods. Classical optimization techniques are conventional optimization approaches that are widely used in optimization problems. Metaheuristic methods are stochastic search algorithms that can be effective for nonconvex constraints. Analytic methods involve sensitivity analysis and gradient-based optimization techniques. Mixed or hybrid methods combine different optimization techniques to improve the solution quality. The paper also provides a performance comparison of these different optimization techniques, which can be useful in selecting an appropriate method for a specific problem. Finally, the paper offers some advice for future research in this field, such as developing new optimization techniques that can handle the complexity of the optimization problem and incorporating uncertainties into the optimization model. Overall, the paper provides a valuable resource for researchers and practitioners in the field of power systems optimization, as it summarizes the various optimization techniques that have been used to solve the FACTS optimization problem and provides insights into their performance and applicability

    Counteracting effects of heavy metals and antioxidants on male fertility

    No full text
    corecore