4 research outputs found

    Color Stability of a New Rice Husk Composite in Comparison with Conventional Composites after Exposure to Commonly Consumed Beverages in Malaysia

    No full text
    Objective. To evaluate the color stability of a new organic rice husk nanocomposite as compared to four conventional composites after exposure to commonly consumed beverages in Malaysia. Methods. One hundred and twenty-five disk samples were prepared from a new rice husk-based composite and four other conventional methacrylate-based light-cured composites of shade A2. The samples were immersed in four commonly consumed beverages: coco-based drink, kopi, Chinese tea, and teh tarik for four weeks. The color measurements were carried out every week using the reflectance spectrophotometer according to the CIE L∗a∗b∗ color system. Color changes of samples (ΔE) in each week were calculated. Statistical analysis was carried out by performing a mixed ANOVA and Tukey’s post hoc test in order to analyse the differences in ΔE. Results. The findings revealed a statistically significant difference of ΔE reading (p<0.05) among all composites immersed in all four beverages after four weeks. Rice husk composites exhibited lesser color stability as compared to Ceram.X One Universal (p<0.001) and G-aenial Universal Flo (p<0.001) but showed higher color stability compared to Solare-X (p<0.001) and Neofil (p<0.001). Coffee and Chinese tea had the most significant impact on color changes (p<0.05) observed in all composites over four weeks of study. Conclusion. Rice husk composite showed acceptable color stability. It can be considered as an alternative to conventional composites due to its eco-friendly properties

    Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance

    Get PDF
    There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation
    corecore