14 research outputs found

    Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers

    Get PDF
    Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman) for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR) and biochemical methods (VITEK 2). Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Antimicrobial Susceptibility of Fresh Produce-Associated Enterobacteriaceae and Enterococci in Oman

    No full text
    Fresh produce bacteria may have phenotypic and/or genotypic antimicrobial resistance traits that may lead to various consequences on the environment and human health. This study evaluated the susceptibility of fresh produce bacteria (banana, cabbage, capsicum, carrots, cucumber, dates, lettuce, mango, papaya, pomegranate, radish, tomato and watermelon) to chlorhexidine and the antibiotic resistance of enterococci. Eighty-eight Enterobacteriaceae bacteria and 31 enterococci were screened for their susceptibility to chlorhexidine using the broth microdilution method. Susceptibility of enterococci to various antibiotics was determined using agar dilution, colorimetric, and Kirby-Bauer disc diffusion methods. Enterococci were more susceptible to chlorhexidine than Enterobacteriaceae indicated by chlorhexidine minimum inhibitory concentration (MIC) of 1 to 8 &micro;g/mL for the former and 1 to 64 &micro;g/mL for the latter. The IntI 1, qacE&Delta;1, qacE and qacG genes were distributed weakly in three, two, two, and three Enterobacteriaceae isolates, respectively. Enterococci had resistance to chloramphenicol (3%), tetracycline (19%), erythromycin (68%), ciprofloxacin (55%), and vancomycin (10%) while 19% of them were multi-drug resistant. In conclusion, this research detected a low to moderate level of antibiotic resistance in enterococci. Some Enterobacteriaceae bacteria had reduced chlorhexidine MICs that were not 10x less than the recommended concentration (100&ndash;200 &micro;g/mL) in food production areas which might challenge the success of the disinfection processes or have clinical implications if the involved bacteria are pathogens. The prevalence of antimicrobial-resistant bacteria in fresh produce should be monitored in the future

    Illumina MiSeq sequencing analysis of fungal diversity in stored dates

    No full text
    Abstract Background Date palm has been a major fruit tree in the Middle East over thousands of years, especially in the Arabian Peninsula. Dates are consumed fresh (Rutab) or after partial drying and storage (Tamar) during off-season. The aim of the study was to provide in-depth analysis of fungal communities associated with the skin (outer part) and mesocarp (inner fleshy part) of stored dates (Tamar) of two cultivars (Khenizi and Burny) through the use of Illumina MiSeq sequencing. Results The study revealed the dominance of Ascomycota (94%) in both cultivars, followed by Chytridiomycota (4%) and Zygomycota (2%). Among the classes recovered, Eurotiomycetes, Dothideomycetes, Saccharomycetes and Sordariomycetes were the most dominant. A total of 54 fungal species were detected, with species belonging to Penicillium, Alternaria, Cladosporium and Aspergillus comprising more than 60% of the fungal reads. Some potentially mycotoxin-producing fungi were detected in stored dates, including Aspergillus flavus, A. versicolor and Penicillium citrinum, but their relative abundance was very limited (<0.5%). PerMANOVA analysis revealed the presence of insignificant differences in fungal communities between date parts or date cultivars, indicating that fungal species associated with the skin may also be detected in the mesocarp. It also indicates the possible contamination of dates from different cultivars with similar fungal species, even though if they are obtained from different areas. Conclusion The analysis shows the presence of different fungal species in dates. This appears to be the first study to report 25 new fungal species in Oman and 28 new fungal species from date fruits. The study discusses the sources of fungi on dates and the presence of potentially mycotoxin producing fungi on date skin and mesocarp

    Speciation of Gram-positive bacteria in fresh and ambient-stored sub-tropical marine fish

    No full text
    This study identified Gram-positive bacteria in three sub-tropical marine fish species; Pseudocaranx dentex (silver trevally), Pagrus auratus (snapper) and Mugil cephalus (sea mullet). It further elucidated the role played by fish habitat, fish body part and ambient storage on the composition of the Gram-positive bacteria. A total of 266 isolates of Gram-positive bacteria were identified by conventional biochemical methods, VITEK, PCR using genus- and species-specific primers and/or 16S rRNA gene sequencing. The isolates were found to fall into 13 genera and 30 species. In fresh fish, Staphylococcus epidermidis and Micrococcus luteus were the most frequent isolates. After ambient storage, S. epidermidis, S. xylosus and Bacillus megaterium were no longer present whereas S. warneri, B. sphaericus, Brevibacillus borstelensis, Enterococcus faecium and Streptococcus uberis increased in frequency. Micrococcus luteus and S. warneri were the most prevalent isolates from P. dentex, while E. faecium and Strep. uberis were the most frequent isolates from P. auratus and M. cephalus. With respect to different parts of the fish body, E. faecium, Strep. uberis and B. sphaericus were the most frequent isolates from the muscles, E. faecium, Strep. uberis from the gills and M. luteus from the gut. This study showed a diversity of Gram-positive bacteria in sub-tropical marine fish; however, their abundance was affected by fish habitat, fish body part and ambient storage

    Bacterial diversity, biogenic amines and lipids oxidation in traditional dried anchovy (Encrasicholina punctifer) during ambient storage

    No full text
    This study aimed to elucidate the effect of ambient storage (23±2oC, 68% RH) on the bacterial load and diversity, biogenic amines and lipids oxidation in traditional dried anchovy (E. punctifer) in order to evaluate its safety, quality and stability during 12 weeks of storage. Total aerobic bacteria (TAB), Staphylococcus aureus, Enterobacteriaceae (ENT), histidine decarboxylating bacteria (HDB), lysine decarboxylating bacteria (LDB) and ornithine decarboxylating bacteria (ODB) were enumerated and identified by conventional, VITEK 2 compact and sequencing of 16S rRNA gene methods. Histamine, cadaverine and putrescine contents were determined by high performance liquid chromatography. Lipid oxidation was evaluated by peroxide value (PV). Total aerobic bacteria, S. aureus, ENT, HDB, LDB and ODB initial counts of log10 4.9 ± 0.85, 3.7 ± 0.57, 4.2 ± 0.05, 3.7 ± 0.72, 3.9 ± 0.40 and 4.1 ± 0.24 CFU/g respectively did not significantly change (p > 0.05) during 12 weeks of storage. A high bacterial diversity of 27 species belonging to 20 genera was found, with the dominance of S. aureus, Acinetobacter lwoffii and S. warneri and the first incidence of Psychrobacter celer, Desemzia incerta, Granulicatella elegans and Bhargavaea indica in dried fish. Initial histamine, cadaverine and putrescine contents and PV of 5.2 ± 4.3, 8.5 ± 1.9 and 5.8 ± 0.6 mg/100g and 0.19 ± 0.02 meq/kg respectively did not significantly change (p > 0.05) during 12 weeks of storage. This study found that ambient storage at 23±2°C, 68% RH for 12 weeks did not affect the bacterial load, biogenic amines and lipids, and that the dried anchovy remained microbiologically safe and of good quality

    Effect of frozen storage on the characteristics of a developed and commercial fish sausages

    No full text
    The effect of frozen storage on the physiochemical, chemical and microbial characteristics of two types of fish sausages was studied. Fish sausages developed (DFS) with a spice-sugar formulation and commercial fish sausages (CFS) were stored at −20 °C for 3 months. Fresh DFS contained 12.22% lipids and had a 3.53 cfu/g total bacteria count (TBC) whereas, CFS contained 5.5% lipids and had a 4.81 cfu/g TBC. During storage, TBC decreased significantly (p  0.05) in CFS. A peroxide value (PV) was not detectable until week four and eight of storage in CFS and DFS, respectively. The salt-soluble proteins (SSP) level was stable in DFS but in CFS it declined significantly (p  0.05) in both sausage types. This study showed that the effect of storage at −20 °C on fish sausages characteristics varied between formulations and depended on the ingredients of fish sausages

    Quantative assessment of total and Gram-positive aerobic bacteria in fresh and ambient-temperature-stored sub-tropical marine fish

    No full text
    The current study was undertaken to enumerate Gram-positive bacteria in fresh sub-tropical marine fish and determine the effect of ambient storage (25°C) on the Gram-positive bacterial count. Total and Gram-positive bacteria were enumerated in the muscles, gills and gut of fresh and stored Pseudocaranx dentex, Pagrus auratus and Mugil cephalus on tryptone soya agar (TSA) and TSA with 0.25% phenylethyl alcohol (PEA), respectively. Initial studies indicated that PEA significantly reduced total aerobic bacterial count (TABC) whereas control Gram-positive bacteria were not affected by 0.25% PEA. TABC significantly increased in all fish body parts, whereas Gram-positive aerobic bacterial count (GABC) significantly increased only in the muscles and gills during ambient storage for 15 h. The TABC of the fish species increased from 4.00, 6.13 and 4.58 log cfu g, respectively in the muscles, gills, and gut to 6.31, 7.31 and 7.23 log cfu g by the end of storage. GABC increased from 2.00, 3.52 and 2.20 log cfu g to 4.70, 5.85 and 3.36 log cfu g. Within each species, TABC were significantly higher in the gills compared to that of muscles and gut; however, no significant differences were found in GABC between muscles and gills. This study demonstrated the potential importance of Gram-positive bacteria in sub-tropical marine fish and their spoilage
    corecore