30 research outputs found

    A self-organized criticality model for ion temperature gradient (ITG) mode driven turbulence in confined plasma

    Full text link
    A new Self-Organized Criticality (SOC) model is introduced in the form of a Cellular Automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e. a heating process and a local diffusive process that sets on if a threshold in the normalized ion temperature gradient R/L_T is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.Comment: In press at Physics of Plasmas, July 2010; 11 pages, 5 figure

    Formation and Evolution of Coherent Structures in 3D Strongly Turbulent Magnetized Plasmas

    Full text link
    We review the current literature on the formation of Coherent Structures (CoSs) in strongly turbulent 3D magnetized plasmas. CoSs (Current Sheets (CS), magnetic filaments, large amplitude magnetic disturbances, vortices, and shocklets) appear intermittently inside a turbulent plasma and are collectively the locus of magnetic energy transfer (dissipation) into particle kinetic energy, leading to heating and/or acceleration of the latter. CoSs and especially CSs are also evolving and fragmenting, becoming locally the source of new clusters of CoSs. Strong turbulence can be generated by the nonlinear coupling of large amplitude unstable plasma modes, by the explosive reorganization of large scale magnetic fields, or by the fragmentation of CoSs. A small fraction of CSs inside a strongly turbulent plasma will end up reconnecting. Magnetic Reconnection (MR) is one of the potential forms of energy dissipation of a turbulent plasma. Analysing the evolution of CSs and MR in isolation from the surrounding CoSs and plasma flows may be convenient for 2D numerical studies, but it is far from a realistic modeling of 3D astrophysical, space and laboratory environments, where strong turbulence can be exited, as e.g. in the solar wind, the solar atmosphere, solar flares and Coronal Mass Ejections (CMEs), large scale space and astrophysical shocks, the magnetosheath, the magnetotail, astrophysical jets, Edge Localized Modes (ELMs) in confined laboratory plasmas (TOKAMAKS), etc.Comment: 27 pages, 31 figures; review; accepted for publication in Physics of Plasmas 202

    Particle Acceleration in an Evolving Network of Unstable Current Sheets

    Full text link
    We study the acceleration of electrons and protons interacting with localized, multiple, small-scale dissipation regions inside an evolving, turbulent active region. The dissipation regions are Unstable Current Sheets (UCS), and in their ensemble they form a complex, fractal, evolving network of acceleration centers. Acceleration and energy dissipation are thus assumed to be fragmented. A large-scale magnetic topology provides the connectivity between the UCS and determines in this way the degree of possible multiple acceleration. The particles travel along the magnetic field freely without loosing or gaining energy, till they reach a UCS. In a UCS, a variety of acceleration mechanisms are active, with the end-result that the particles depart with a new momentum. The stochastic acceleration process is represented in the form of Continuous Time Random Walk (CTRW), which allows to estimate the evolution of the energy distribution of the particles. It is found that under certain conditions electrons are heated and accelerated to energies above 1 MeV in much less than a second. Hard X-ray (HXR) and microwave spectra are calculated from the electrons' energy distributions, and they are found to be compatible with the observations. Ions (protons) are also heated and accelerated, reaching energies up to 10 MeV almost simultaneously with the electrons. The diffusion of the particles inside the active region is extremely fast (anomalous super-diffusion). Although our approach does not provide insight into the details of the specific acceleration mechanisms involved, its benefits are that it relates acceleration to the energy release, and it well describes the stochastic nature of the acceleration process.Comment: 37 pages, 10 figures, one of them in color; in press at ApJ (2004

    Particle heating and acceleration by reconnecting and nonreconnecting current sheets

    No full text
    In this article, we study the physics of charged particle energization inside a strongly turbulent plasma, where current sheets naturally appear in evolving large-scale magnetic topologies, but they are split into two populations of fractally distributed reconnecting and nonreconnecting current sheets (CS). In particular, we implemented a Monte Carlo simulation to analyze the effects of the fractality and we study how the synergy of energization at reconnecting CSs and at nonreconnecting CSs affects the heating, the power-law high energy tail, the escape time, and the acceleration time of electrons and ions. The reconnecting current sheets systematically accelerate particles and play a key role in the formation of the power-law tail in energy distributions. On the other hand, the stochastic energization of particles through their interaction with nonreconnecting CSs can account for the heating of the solar corona and the impulsive heating during solar flares. The combination of the two acceleration mechanisms (stochastic and systematic), commonly present in many explosive events of various sizes, influences the steady-state energy distribution, as well as the transport properties of the particles in position- and energy-space. Our results also suggest that the heating and acceleration characteristics of ions and electrons are similar, the only difference being the time scales required to reach a steady state
    corecore