3 research outputs found
GreMuTRRR: A Novel Genetic Algorithm to Solve Distance Geometry Problem for Protein Structures
Nuclear Magnetic Resonance (NMR) Spectroscopy is a widely used technique to
predict the native structure of proteins. However, NMR machines are only able
to report approximate and partial distances between pair of atoms. To build the
protein structure one has to solve the Euclidean distance geometry problem
given the incomplete interval distance data produced by NMR machines. In this
paper, we propose a new genetic algorithm for solving the Euclidean distance
geometry problem for protein structure prediction given sparse NMR data. Our
genetic algorithm uses a greedy mutation operator to intensify the search, a
twin removal technique for diversification in the population and a random
restart method to recover stagnation. On a standard set of benchmark dataset,
our algorithm significantly outperforms standard genetic algorithms.Comment: Accepted for publication in the 8th International Conference on
Electrical and Computer Engineering (ICECE 2014
FGPGA: An Efficient Genetic Approach for Producing Feasible Graph Partitions
Graph partitioning, a well studied problem of parallel computing has many
applications in diversified fields such as distributed computing, social
network analysis, data mining and many other domains. In this paper, we
introduce FGPGA, an efficient genetic approach for producing feasible graph
partitions. Our method takes into account the heterogeneity and capacity
constraints of the partitions to ensure balanced partitioning. Such approach
has various applications in mobile cloud computing that include feasible
deployment of software applications on the more resourceful infrastructure in
the cloud instead of mobile hand set. Our proposed approach is light weight and
hence suitable for use in cloud architecture. We ensure feasibility of the
partitions generated by not allowing over-sized partitions to be generated
during the initialization and search. Our proposed method tested on standard
benchmark datasets significantly outperforms the state-of-the-art methods in
terms of quality of partitions and feasibility of the solutions.Comment: Accepted in the 1st International Conference on Networking Systems
and Security 2015 (NSysS 2015