181 research outputs found

    Uniform female-biased sex ratios in alpine willows

    Get PDF

    Carbon exchange and permafrost collapse: implications for a changing climate

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2005With a warmer climate, the wetlands of Interior Alaska may experience more frequent or extensive stand-replacing fires and permafrost degradation. This, in turn may change the primary factors controlling carbon emissions. I measured carbon exchange along a moisture transect from the center of a sphagnum-dominated bog into a burned forest (2001 Survey Line Fire) on the Tanana River Floodplain. Both the bog and the surrounding burn were sinks for CO₂, and the bog was a CH₄ source in the abnormally dry summer of 2004. Thermokarst and subsiding soils were observed on the margin of the bog in the three years since the fire, increasing the anaerobic portion of the soil landscape. I observed the greatest variation in carbon fluxes in this portion of the transect. I conclude that permafrost collapse is altering the pattern of emissions from this landscape. I tracked historical changes in vegetation, hydrology and fire at this site through macrofossil, charcoal and diatom analysis of peat cores. The paleoecological record suggests that fire mediates permafrost collapse in this system. This study indicates that future changes in temperature and precipitation will alter carbon cycling and vegetation patterns across this boreal landscape

    Vegetation composition and shrub extent on the Yukon coast, Canada, are strongly linked to ice-wedge polygon degradation

    Get PDF
    Changing environmental and geomorphological conditions are resulting in vegetation change in ice-wedge polygons in Arctic tundra. However, we do not yet know how microscale vegetation patterns relate to individual environmental and geomorphological parameters. This work aims at examining these relations in polygonal terrain. We analysed composition and cover of vascular plant taxa and surface height, active layer depth, soil temperature, carbon and nitrogen content, pH and electrical conductivity in four polygon mires located on the Yukon coast. We found that vascular plant species composition and cover correlates best with relative surface height. Ridges of low-centred polygons and raised centres of high-centred polygons support the growth of mesic and wetland species (e.g., Betula glandulosa, Salix pulchra, S. reticulata, Rubus chamaemorus, various ericaceous dwarf shrubs, Eriophorum vaginatum, Poa arctica). Wetland and aquatic plant species (e.g., E. angustifolium, Carex aquatilis, C. chordorrhiza, Pedicularis sudetica) grow in low-lying centres of polygons and in troughs between polygons. We also found a relationship between vascular plant species composition and substrate characteristics such as pH, electrical conductivity and total organic carbon, although the individual influence of these parameters could not be determined because of their correlation with relative surface height. Our findings stress the regulatory role of microtopography and substrate in vegetation dynamics of polygonal terrain. Ongoing warming in this region will lead to changes to polygonal terrain through permafrost degradation and subsequent conversion of low-centred into high-centred polygons. Our results indicate that shrubs, particularly Betula glandulosa and heath species, have the potential to expand most

    Flower Detection Using Object Analysis: New Ways to Quantify Plant Phenology in a Warming Tundra Biome

    Get PDF
    Rising temperatures caused by global warming are affecting the distributions of many plant and animal species across the world. This can lead to structural changes in entire ecosystems, and serious, persistent environmental consequences. However, many of these changes occur in vast and poorly accessible biomes and involve myriad species. As a consequence, conventional methods of measurement and data analysis are resource-intensive, restricted in scope, and in some cases, intractable for measuring species changes in remote areas. In this article, we introduce a method for detecting flowers of tundra plant species in large data sets obtained by aerial drones, making it possible to understand ecological change at scale, in remote areas. We focus on the sedge species E. vaginatum that is dominant at the investigated tundra field site in the Canadian Arctic. Our system is a modified version of the Faster R-CNN architecture capable of real-world plant phenology analysis. Our model outperforms experienced human annotators in both detection and counting, recording much higher recall and comparable level of precision, regardless of the image quality caused by varying weather conditions during the data collection. (K. Stanski, GitHub - karoleks4/flower-detection: Flower detection using object analysis: New ways to quantify plant phenology in a warming tundra biome. GitHub. Accessed: Sep. 17, 2021. [Online]. Available: https://github.com/karoleks4/flower-detection.

    Resilience: Easy to use but hard to define

    Get PDF
    First conceptualized in the 1970s, resilience has become a popular term in the ecological literature, used in the title, abstract, or keywords of approximately 1% of papers identified by ISI Web of Science in the field of environmental sciences and ecology in 2011. However, many papers make only passing reference to the term and do not explain what resilience means in the context of their study system, despite there being a number of possible definitions. In an attempt to determine how resilience is being used in ecological studies, we surveyed 234 papers published between 2004 and 2011 that were identified under the topic “resilience” by ISI Web of Science. Of these, 38% used the word resilience fewer than three times (often in the abstract or keyword list), 66% did not define the term, and 71% did not provide a citation to the resilience literature. Studies that defined resilience most often discussed it as pertaining to an entire ecosystem under continuous rather than discrete disturbance. Given the complex nature of this concept, we believe that care should be taken to properly describe what is meant by the term resilience in ecological studies
    • 

    corecore