5 research outputs found

    Effective Inhibition of Carbon Steel Corrosion by Waterborne Polyurethane Based on N-<i>tert</i>-Butyl Diethanolamine in 2M HCl: Experimental and Computational Findings

    Full text link
    The efficiency of corrosion inhibition for waterborne polyurethane based on N-tert-butyl diethanolamine (tB-WPU) is investigated using different techniques. Corrosion weight loss, open circuit potential experiments, electrochemical impedance spectroscopy, and potentiodynamic polarization measurements show that both a commercial reagent and a polyurethane-based inhibitor prevent corrosion at increasing temperature to 50 °C. At 75 °C, the activity of both reagents is reduced. In stirring conditions, the effectiveness of acid corrosion inhibition (25 °C, 500 ppm) drops abruptly from 89.5% to 60.7%, which is related presumably to the complexity of binding the polymer molecules to the metal surface. As follows from thermodynamic calculations, the adsorption of tB-WPU on the metal surface in 2M HCl can be treated as a physisorption. Model quantum–chemical calculations support the experimental studies and elucidate the nature of steel surface–inhibitor molecule chemical bond, which is realized mainly by carboxyl and amino groups. It is concluded that WPUs can be considered as a perspective alternative to commercial oilfield reagents due to their versatility

    Ion-Beam Synthesis of Structure-Oriented Iron Nanoparticles in Single-Crystalline Rutile TiO<sub>2</sub>

    Full text link
    Magnetic nanoparticles embedded into semiconductors have current perspectives for use in semiconducting spintronics. In this work, 40 keV Fe+ ions were implanted in high fluences of (0.5 ÷ 1.5) × 1017 ion/cm2 into an oxide semiconductor and single-crystalline TiO2 plates of rutile structure with (100) or (001) face orientations. Microstructure, elemental-phase composition, and magnetic properties of the Fe-ion-implanted TiO2 were studied by scanning and transmission electron microscopies (SEM and TEM), X-ray photoelectron (XPS) and Rutherford backscattering (RBS) spectroscopies, as well as vibrating-sample magnetometry (VSM). The high-fluence ion implantation results in the formation of magnetic nanoparticles of metallic iron beneath the irradiated surface of rutile. The induced ferromagnetism and observed two- or four-fold magnetic anisotropy are associated with the endotaxial growth of Fe nanoparticles oriented along the crystallographic axes of TiO2

    Microstructure and Unusual Ferromagnetism of Epitaxial SnO<sub>2</sub> Films Heavily Implanted with Co Ions

    Full text link
    In this work, we have studied the microstructure and unusual ferromagnetic behavior in epitaxial tin dioxide (SnO2) films implanted with 40 keV Co+ ions to a high fluence of 1.0 × 1017 ions/cm2 at room or elevated substrate temperatures. The aim was to comprehensively understand the interplay between cobalt implant distribution, crystal defects (such as oxygen vacancies), and magnetic properties of Co-implanted SnO2 films, which have potential applications in spintronics. We have utilized scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), differential thermomagnetic analysis (DTMA), and ferromagnetic resonance (FMR) to investigate Co-implanted epitaxial SnO2 films. The comprehensive experimental investigation shows that the Co ion implantation with high cobalt concentration induces significant changes in the microstructure of SnO2 films, leading to the appearance of ferromagnetism with the Curie temperature significantly above the room temperature. We also established a strong influence of implantation temperature and subsequent high-temperature annealing in air or under vacuum on the magnetic properties of Co-implanted SnO2 films. In addition, we report a strong chemical effect of ethanol on the FMR spectra. The obtained results are discussed within the model of two magnetic layers, with different concentrations and valence states of the implanted cobalt, and with a high content of oxygen vacancies
    corecore