7 research outputs found
Design of Brush DC Motorās Speed Controller Using PI Method with Adjusted Hydrogen Fuel Feed on The PEMFC
Hydrogen is one of the alternate way that become a solution of the crisis of energy problems. Fuel cell transform the hydrogen into electric power, heat, and water. The power that was made by the fuel cell can be used for a lot of things, and transportation is one of them. This research main point is to make a design of a speed controller for a DC motor as a main object using the power that was created by fuel cell. The controller is a system that will increase the efficiency of the hydrogen used ,as a main supply, with controlling the flow rate of hydrogen that flowed into the fuel cell in order to avoid the over flowing of hydrogen that will cause the hydrogen wasted. The controller will also boost the DC motorās response. To conduct the research, the method that is the most suitable for the case is PI control system that will boosted the transient response from the system which stands from a proportional, derivative, and integral parameters that will be tuned by using a root-locus method with the purpose to make a system that has a quick rise time and low %overshoot that will make the system has rise time=10.1s, settling time=66s, peak time = 40.9s, % Overshoot=8.66%, steady state=1 as the transient responseās result
Analisis Pengaruh Kontrol PI Dengan Integral Anti-Windup Sebagai Upaya Reduksi Lonjakan Respon pada Sistem Ruang Termal
The Proportional Integral Derivative (PID) control is a classical control type which still use in industry and the development of methods is being improve. The simplicity of the structure and reliability of the PID makes this control more popular in the industry. Integral element is control element that produce control signals by accumulating error, its process can cause the windup events. Windup is the accumulation of integral controls outside the saturation boundary. Windup has an impact on forced response over a long period which worsens of time response and stability. This paper examines the application of anti-windup controls as an effort to overcome the accumulation of integral actions in PI control scheme. At the temperature reference value of 35 0C, the room temperature response with anti-windup shows a high temperature overshoot about 43.6%. The settling time is 15.3 minutes relative slow. The system response with anti-windup shows the lowest temperature overshoot that is 15.2% and the settling time of the system tends to be faster around 6.9 minutes.
Keywords Ć¢ā¬ā Thermal room, proportional-Integral, anti-windup
Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine
Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system
Development of Non-Intrusive Load Monitoring of Electricity Load Classification with Low-Frequency Sampling Based on Support Vector Machine
Non-intrusive load monitoring (NILM) is a promising approach to provide energy consumption monitoring of electrical appliances and analysis of current and voltage data with less instrumentation. This paper proposes an electrical load classification model using support vector machine (SVM). SVM was chosen to keep the computational cost low and be able to implement an embedded system. The SVM model was utilized to classify the on/off state of air conditioners, light bulbs, other uncategorized electronics, and their combinations. It utilizes low-frequency sampling data captured every minute, or at a 0.0167 Hz rate. Utilization change in active and reactive power was used as a feature in the model training. The optimal kernel for the model was the radial basis function (RBF) kernel with C and gamma values of 88.587 and 2.336 as hyperparameters, producing a highly accurate model. In testing with real-time conditions, the model classified the on/off state of the electrical loads with 0.93 precision, 0.91 recall, and 0.91 f-score. The results of testing proved that the model can be applied in real time with high accuracy and with an acceptable performance in field implementation using an embedded system
PERANCANGAN KONTROL PROPORTIOAL INTEGRAL(PI) PADA SISTEM PENGATURAN DEBIT AIR DALAM TANGKI TERHUBUNG UNTUK MENDUKUNG PEMBELAJARAN PROJEK
Kontrol otomatik merupakan bidang ilmu yang multidisiplin, sehingga dibutuhkan kemampuan matematis dan nalar yang bagus dalam memahami konsep, akan tetapi salah satu kendala yang dihadapi yaitu karakteristik materi yang abstrak dan kemampuan dasar mahasiswa yang masih kurang. Oleh karena itu salah satu cara memperbaiki hal tersebut, dilakukan suatu inovasi dalam pembelajaran yaitu dengan membuat suatu prototype sederhana sebagai media pembelajaran dalam memahami kontrol otomatik. Kegiatan ini dilakukan untuk mendukung pengembangan keterampilan mahasiswa, terutama dalam desain kontrol untuk sistem debit air. Sistem ini dirancang terdiri dari tiga tangki, sensor flowmeter, pompa air, mikrokontroller, dan servo yang terhubung dengan valve sebagai actuator. Sistem merupakan loop terbuka dengan perkiraan merupakan orde 1 dan memiliki konstanta waktu sekitar 15 detik. Skema kontrol dirancang dengan menggunakan strategi proportional integral (PI). Hasil pengujian alat menunjukkanĀ nilai yang mendekatiĀ rise time (Tr) 66.17 detik, settling time (Ts) 70.32 detik dan steady state error sekitar 7.85% relatif terhadap nilai set poin
Prototipe Penentu Sudut Elevasi Lengan Meriam Secara Nirkabel Menggunakan Motor Langkah Berbasis Mikrokontroler
Permasalahan yang biasa timbul pada pengendalian lengan meriam adalah kurangnya akurasi sudut yang terbentuk dan faktor keamanan dari operator meriam itu sendiri. Dengan mendisain suatu sistem kendali berbasis komputer yang dapat menghitung dengan teliti dan cepat, serta memanfaatkan teknologi nirkabel permasalahan itu dapat diatasi. Prototipe yang dibuat ini cukup sederhana, terdiri dari komputer dengan Bluetooth terpasang, modul bluetooth, mikrokontroler, motor langkah dan rangkaian elektrik penggerak motor langkah. Motor langkah digunakan untuk menggerakkan sistem mekanis baik secara vertikal maupun horizontal. Dari data pengukuran diperoleh karakteristik alat ini yaitu akurasi sudut vertikal lebih baik saat sudut elevasi melebihi 14.5ā°, sedangkan akurasi sudut horizontal lebih kecil saat sudutelevasi melebihi 180ā°, untuk tingkat kepresisian alat, sudut vertikal memiliki nilai ketidakpastian 0 sehingga untuk pengulangan dengan kondisi yang sama diperoleh nilai yang sama, sedangkan untuk sudut horizontal nilai ketidakpastian akan semakin besar saat sudut elevasi lebih dari 180ā°. Prototipe ini bekerja cukup baik dengan jarak maksimum antara komputer dan motor langkahnya 7 meter tanpa ada media penghalang, dengan tidak mempengaruhi sudut elevasi yang terbentu
Simultaneous Enhancement of Photovoltaic System Intermittency and Damping Load Variations in Noninverting Buck-Boost Converters Using Robust Weighted Mixed-Sensitivity Control
Due to the intermittent and uncertain nature of photovoltaic systems, their incorporation within a DC microgrid presents a challenge to primary control, which directly interfaces with the generation converter. By utilizing a weighted mixed sensitivity control, this study aims to amplify the robustness of a noninverting buck-boost converter integrated photovoltaic system in addressing the uncertainties and disturbances arising from simultaneous fluctuations in irradiance, temperature, and load. The robust control algorithm was formulated by employing frequency-weighting functions and imposing a requirement for the minimum norm of the transformation matrix to achieve robust performance and robust stability. Furthermore, the involvement of reference models in a robust control synthesis offered additional advantages in enhancing the damping of the system. Consequently, the entire design configuration could effectively establish the converter robustness against both generation and load intermittencies occurring simultaneously. The simulation and experiment results are demonstrated to illustrate the efficiency of the designed algorithm