4 research outputs found

    Immobilization of Analgetic AB-101 into Calcium Alginate Gels

    Get PDF
    A new analgetic drug AB-101 has been immobilized into Ca2+-alginate gel beads with average diameter of 1 mm. A series of the alginate gel contains with various mannuronic/guluronic (M/G) ratios has been chosen to control the diffusion of the drug. Release of the drug from the alginate gel beads into physiological solutions consisting of sodium ions has been examined. A discontinuous time of the Fickian diffusion of the drug depending on M/G ratio was followed by a burst release of the remaining drugs. The burst release was due to a swift disintegration of Ca2+-alginate with exchange on sodium ions. The preceding discontinuous lag time promotes a free dissociate exchange of sodium-calcium ions in M units, while the burst disintegration leads to fast dissociation of G units. The lag time can be control by M/G ratio of Ca2+-alginate gels. The lag time increases if a content of the M units decreases. The increase of M units was led to more extensive swelling of the gel beads. Such way could be promising for a controlled drug delivery or the use in implants with controlled drug effect

    Solar cell research at an altitude of 3340 meters above sea level

    No full text
    Providing electricity to consumers in the mountainous regions is one of the urgent problems of power engineers. Laying and maintenance of power lines is expensive because of the difficult terrain and climatic conditions Providing a heating system for heating boilers, requires the acquisition and delivery of large quantities of combustible material. The heating season in the highlands lasts up to nine months. Considering all the costs of electricity consumption and heating, it becomes necessary to conduct research and evaluate the economic efficiency of using solar power plants, focused on providing electricity to consumers in mountain regions. In order to create a scientific basis for solving innovative problems in solar energy at the Tien Shan high-mountain cosmic ray scientific station (TSHSS), located at an altitude of 3340 meters above sea level, initiative work is underway to create a solar power station (SPS), assess its effectiveness, safety , environmental friendliness and reliability in work. At the moment, a solar power station has been created at an altitude of 3340 meters above sea level. A comparative analysis of the results of generating electricity from the same type of solar power plants located at altitudes of 800 and 3340 meters above sea level was carried out. It is shown that the amount of electricity generated by a solar power plant at an altitude of 3340 is 20 percent more than at an altitude of 800 meters
    corecore