29 research outputs found

    Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion

    Get PDF
    We propose a semidefinite optimization (SDP) model for the class of minimax two-stage stochastic linear optimization problems with risk aversion. The distribution of second-stage random variables belongs to a set of multivariate distributions with known first and second moments. For the minimax stochastic problem with random objective, we provide a tight SDP formulation. The problem with random right-hand side is NP-hard in general. In a special case, the problem can be solved in polynomial time. Explicit constructions of the worst-case distributions are provided. Applications in a production-transportation problem and a single facility minimax distance problem are provided to demonstrate our approach. In our experiments, the performance of minimax solutions is close to that of data-driven solutions under the multivariate normal distribution and better under extremal distributions. The minimax solutions thus guarantee to hedge against these worst possible distributions and provide a natural distribution to stress test stochastic optimization problems under distributional ambiguity.Singapore-MIT Alliance for Research and TechnologyNational University of Singapore. Dept. of Mathematic

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    Transductive Minimax Probability Machine

    No full text

    Size distribution of detached drops

    No full text

    On Tcebycheff's type inequalities

    No full text

    Dualidad de Haar y problemas de momentos

    No full text
    Dualidad, Programación Semi-Infinita, Problemas de Momentos, Duality, Semi-Infinite Programming, Moment Problems, 90C48,
    corecore