234 research outputs found

    Comments on "Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies: A basis for q-exponential distributions"

    Full text link
    It is shown that the Renyi entropy is as stable as the Tsallis entropy at least for Abe-Lesche counterexamples.Comment: 1 pag

    Optically-Induced Polarons in Bose-Einstein Condensates: Monitoring Composite Quasiparticle Decay

    Full text link
    Nonresonant light-scattering off atomic Bose-Einstein condensates (BECs) is predicted to give rise to hitherto unexplored composite quasiparticles: unstable polarons, i.e., local ``impurities'' dressed by virtual phonons. Optical monitoring of their spontaneous decay can display either Zeno or anti-Zeno deviations from the Golden Rule, and thereby probe the temporal correlations of elementary excitations in BECs.Comment: 4 pages, 3 figure

    Wigner Molecules in Nanostructures

    Full text link
    The one-- and two-- particle densities of up to four interacting electrons with spin, confined within a quasi one--dimensional ``quantum dot'' are calculated by numerical diagonalization. The transition from a dense homogeneous charge distribution to a dilute localized Wigner--type electron arrangement is investigated. The influence of the long range part of the Coulomb interaction is studied. When the interaction is exponentially cut off the ``crystallized'' Wigner molecule is destroyed in favor of an inhomogeneous charge distribution similar to a charge density wave .Comment: 10 pages (excl. Figures), Figures available on request LaTe

    Fractional statistics and finite bosonic system: A one-dimensional case

    Full text link
    The equivalence is established between the one-dimensional (1D) Bose-system with a finite number of particles and the system obeying the fractional (intermediate) Gentile statistics, in which the maximum occupation of single-particle energy levels is limited. The system of 1D harmonic oscillators is considered providing the model of harmonically trapped Bose-gas. The results are generalized for the system with power energy spectrum.Comment: 10 page

    Metal-Insulator Transition and Spin Degree of Freedom in Silicon 2D Electron Systems

    Full text link
    Magnetotransport in 2DES's formed in Si-MOSFET's and Si/SiGe quantum wells at low temperatures is reported. Metallic temperature dependence of resistivity is observed for the n-Si/SiGe sample even in a parallel magnetic field of 9T, where the spins of electrons are expected to be polarized completely. Correlation between the spin polarization and minima in the diagonal resistivity observed by rotating the samples for various total strength of the magnetic field is also investigated.Comment: 3 pages, RevTeX, 4 eps-figures, conference paper (EP2DS-13

    A Simple Theory of Condensation

    Full text link
    A simple assumption of an emergence in gas of small atomic clusters consisting of cc particles each, leads to a phase separation (first order transition). It reveals itself by an emergence of ``forbidden'' density range starting at a certain temperature. Defining this latter value as the critical temperature predicts existence of an interval with anomalous heat capacity behaviour cpΔT1/cc_p\propto\Delta T^{-1/c}. The value c=13c=13 suggested in literature yields the heat capacity exponent α=0.077\alpha=0.077.Comment: 9 pages, 1 figur

    A Droplet State in an Interacting Two-Dimensional Electron System

    Full text link
    It is well known that the dielectric constant of two-dimensional (2D) electron system goes negative at low electron densities. A consequence of the negative dielectric constant could be the formation of the droplet state. The droplet state is a two-phase coexistence region of high density liquid and low density "gas". In this paper, we carry out energetic calculations to study the stability of the droplet ground state. The possible relevance of the droplet state to recently observed 2D metal-insulator transition is also discussed.Comment: 4 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications

    Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas

    Full text link
    Low-energy properties of the homogeneous electron gas in one dimension are completely described by the group velocities of its charge (plasmon) and spin collective excitations. Because of the long range of the electron-electron interaction, the plasmon velocity is dominated by an electrostatic contribution and can be estimated accurately. In this Letter we report on Quantum Monte Carlo simulations which demonstrate that the spin velocity is substantially decreased by interactions in semiconductor quantum wire realizations of the one-dimensional electron liquid.Comment: 13 pages, figures include

    Fractional Fokker-Planck Equation for Fractal Media

    Full text link
    We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived from the fractional Chapman-Kolmogorov equation. Using the Fourier transform, we get the Fokker-Planck-Zaslavsky equations that have fractional coordinate derivatives. The Fokker-Planck equation for the fractal media is an equation with fractional derivatives in the dual space.Comment: 17 page

    Correlation energy of an electron gas in strong magnetic fields at high densities

    Full text link
    The high-density electron gas in a strong magnetic field B and at zero temperature is investigated. The quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2) (B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner parameter r_s. The perturbation series is given exactly up to o(r_B) for the case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.
    corecore