82 research outputs found

    Measuring stochastic gravitational-wave energy beyond general relativity

    Get PDF
    Gravity theories beyond general relativity (GR) can change the properties of gravitational waves: their polarizations, dispersion, speed, and, importantly, energy content are all heavily theory- dependent. All these corrections can potentially be probed by measuring the stochastic gravitational- wave background. However, most existing treatments of this background beyond GR overlook modifications to the energy carried by gravitational waves, or rely on GR assumptions that are invalid in other theories. This may lead to mistranslation between the observable cross-correlation of detector outputs and gravitational-wave energy density, and thus to errors when deriving observational constraints on theories. In this article, we lay out a generic formalism for stochastic gravitational- wave searches, applicable to a large family of theories beyond GR. We explicitly state the (often tacit) assumptions that go into these searches, evaluating their generic applicability, or lack thereof. Examples of problematic assumptions are: statistical independence of linear polarization amplitudes; which polarizations satisfy equipartition; and which polarizations have well-defined phase velocities. We also show how to correctly infer the value of the stochastic energy density in the context of any given theory. We demonstrate with specific theories in which some of the traditional assumptions break down: Chern-Simons gravity, scalar-tensor theory, and Fierz-Pauli massive gravity. In each theory, we show how to properly include the beyond-GR corrections, and how to interpret observational results.Comment: 18 pages (plus appendices), 1 figur

    Probing gravitational wave polarizations with signals from compact binary coalescences

    Get PDF
    In this technical note, we study the possibility of using networks of ground-based detectors to directly measure gravitational-wave polarizations using signals from compact binary coalescences. We present a simple data analysis method to partially achieve this, assuming presence of a strong signal well-captured by a GR template.Comment: Technical not

    Extracting the Gravitational Recoil from Black Hole Merger Signals

    Get PDF
    Gravitational waves carry energy, angular momentum, and linear momentum. In generic binary black hole mergers, the loss of linear momentum imparts a recoil velocity, or a “kick,” to the remnant black hole. We exploit recent advances in gravitational waveform and remnant black hole modeling to extract information about the kick from the gravitational wave signal. Kick measurements such as these are astrophysically valuable, enabling independent constraints on the rate of second-generation merger. Further, we show that kicks must be factored into future ringdown tests of general relativity with third-generation gravitational wave detectors to avoid systematic biases. We find that, although little information can be gained about the kick for existing gravitational wave events, interesting measurements will soon become possible as detectors improve. We show that, once LIGO and Virgo reach their design sensitivities, we will reliably extract the kick velocity for generically precessing binaries—including the so-called superkicks, reaching up to 5000 km/s

    Self-Completeness and the Generalized Uncertainty Principle

    Get PDF
    The generalized uncertainty principle discloses a self-complete characteristic of gravity, namely the possibility of masking any curvature singularity behind an event horizon as a result of matter compression at the Planck scale. In this paper we extend the above reasoning in order to overcome some current limitations to the framework, including the absence of a consistent metric describing such Planck-scale black holes. We implement a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating metric, which we derived by mimicking the effects of the generalized uncertainty principle via a short scale modified version of Einstein gravity. In such a way, we find a self-consistent scenario that reconciles the self-complete character of gravity and the generalized uncertainty principle.Comment: 20 pages, 6 figures, v2: additional references, version in press on JHE

    Modeling the Dispersion and Polarization Content of Gravitational Waves for Tests of General Relativity

    Get PDF
    We propose a generic, phenomenological approach to modifying the dispersion of gravitational waves, independent of corrections to the generation mechanism. This model-independent approach encapsulates all previously proposed parametrizations, including Lorentz violation in the Standard-Model Extension, and provides a roadmap for additional theories. Furthermore, we present a general approach to include modulations to the gravitational-wave polarization content. The framework developed here can be implemented in existing data analysis pipelines for future gravitational-wave observation runs.Comment: 4 pages, Presented at the Seventh Meeting on CPT and Lorentz Symmetry, Bloomington, Indiana, June 20-24, 201

    Detecting Beyond-Einstein Polarizations of Continuous Gravitational Waves

    Get PDF
    The direct detection of gravitational waves with the next generation detectors, like Advanced LIGO, provides the opportunity to measure deviations from the predictions of General Relativity. One such departure would be the existence of alternative polarizations. To measure these, we study a single detector measurement of a continuous gravitational wave from a triaxial pulsar source. We develop methods to detect signals of any polarization content and distinguish between them in a model independent way. We present LIGO S5 sensitivity estimates for 115 pulsars.Comment: submitted to PR

    Comment on "Analysis of Ringdown Overtones in GW150914''

    Full text link
    Cotesta et al. (2022) reanalyze the GW150914 ringdown, arguing against the presence of an overtone and suggesting claims of its detection in Isi et al. (2019) were driven by noise. Here we point out a number of technical errors in that analysis, including a software bug, and show that features highlighted as problematic are in fact expected and encountered in simulated data. After fixes, the code in used in Cotesta et al. (2022) produces results consistent with the presence of the overtone. All code and data are available at https://github.com/maxisi/gw150914_rd_commentComment: 2 pages, 2 figures; a reproducible article prepared with ShowYourWork hosted at https://github.com/maxisi/gw150914_rd_commen
    • …
    corecore