4 research outputs found

    Gas hydrodynamics and mass transfer in low- and medium-consistency pulp suspensions in a retention tower

    No full text
    In the pulp and paper industry, the interaction between the gas, liquid, and solid phases occurring in various unit operations is often not clearly understood. Such multi-phase operations include flotation deinking (a separation process of paper fibres in the recycling process) as well as the delignification and bleaching operations in the kraft pulping process. Much of the design, operation, and optimization of such processing equipment are dependent upon past experience as well as trial-and-error methodologies. Pulp fibre suspensions possess a complex and unique rheology. The unpredictability of the behaviour of pulp suspensions at any given mass concentration is due to the bonding between the fibres resulting in network formation (which depends on suspension consistency) with this interaction creating complexity in fluid flow in various unit operations. This thesis describes the gas hydrodynamic behaviour and gas-liquid mass transfer characteristic in low- and medium-consistency pulp suspensions in batch operation. First, the hydrodynamic behaviour of the gas phase (air) in water and pulp suspensions having mass concentrations up to Cm = 7% is examined by visually observing and recording the bubble shape, size, and rise velocity in a rectangular channel. Results are obtained using a high-speed video camera. Second, the hydrodynamic behaviour is described in terms of the gas holdup along with axial and radial gas phase distributions in water and kraft pulp suspensions having mass concentrations between Cm = 0.5 and 9% in a batch-operated cylindrical bubble column. The gas holdup results are compared using three methods: the suspension height method, the pressure difference method, and the electrical resistance tomography (ERT) method. Finally, the volumetric gas-liquid mass transfer characteristic of air in water and kraft pulp suspensions having mass concentrations up to Cm = 4% is examined in the same bubble column in batch-operation using a dissolved oxygen probe. Experimental results were comparable to that in literature for water and for pulp fibre suspensions having Cm < 2%. The presence of fibres had a significant effect on the gas holdup and mass transfer characteristic with results providing insight on the limitations that exist in industrial pulp unit operations.Applied Science, Faculty ofChemical and Biological Engineering, Department ofGraduat

    The Design of a Portable Biodiesel Plant

    No full text
    Disclaimer: “UBC SEEDS provides students with the opportunity to share the findings of their studies, as well as their opinions, conclusions and recommendations with the UBC community. The reader should bear in mind that this is a student project/report and is not an official document of UBC. Furthermore readers should bear in mind that these reports may not reflect the current status of activities at UBC. We urge you to contact the research persons mentioned in a report or the SEEDS Coordinator about the current status of the subject matter of a project/report.”Applied Science, Faculty ofChemical and Biological Engineering, Department ofUnreviewedUndergraduat
    corecore