9 research outputs found

    Photoneutron reaction cross sections for

    Get PDF
    There is well-known problem of significant systematic disagreements between data for reactions (γ, 1n), (γ, 2n), obtained at Livermore (USA) and Saclay (France) using the method of photoneutron multiplicity sorting. The averaged ratios RS/Lint of integrated cross sections obtained at Saclay and Livermore for 19 nuclei from 51V to 239U are equal to 0.84 for (γ, 2n) and 1.07 for (γ, 1n) reactions. For 75As RS/Lint ratios for both partial reactions are very close (1.22 and 1.21) but for 181Ta - are quite different (0.89 and 1.25). Using the objective physical data reliability criteria it was found that there are serious doubts in reliability of Saclay and Livermore data. The newly evaluated reliable cross sections disagree with experimental data. In addition to unreliable sorting of many neutrons between both partial reactions many neutrons were lost - on the case of 181Ta in 1n channel, in the case of 75As in both 1n and 2n channels

    Photoneutron reaction cross sections from various experiments – analysis and evaluation using physical criteria of data reliability

    Full text link
    The majority of photonuclear reaction cross sections important for many fields of science and technology and various data files (EXFOR, RIPL, ENDF, etc.) supported by the IAEA were obtained in experiments using quasimonoenergetic annihilation photons. There are well–known systematic discrepancies between the partial photoneutron reactions (γ, 1n), (γ, 2n), (γ, 3n). For analysis of the data reliability the objective physical criteria were proposed. It was found out that the experimental data for many nuclei are not reliable because of large systematic uncertainties of the neutron multiplicity sorting method used. The experimentally–theoretical method was proposed for evaluating the reaction cross sections data satisfying the reliability criteria. The partial and total reaction cross sections were evaluated for many nuclei. In many cases evaluated data differ noticeably from both the experimental data and the data evaluated before for the IAEA Photonuclear Data Library. Therefore it became evident that the IAEA Library needs to be revised and updated

    Photoneutron reaction cross sections from various experiments – analysis and evaluation using physical criteria of data reliability

    Full text link
    The majority of photonuclear reaction cross sections important for many fields of science and technology and various data files (EXFOR, RIPL, ENDF, etc.) supported by the IAEA were obtained in experiments using quasimonoenergetic annihilation photons. There are well–known systematic discrepancies between the partial photoneutron reactions (γ, 1n), (γ, 2n), (γ, 3n). For analysis of the data reliability the objective physical criteria were proposed. It was found out that the experimental data for many nuclei are not reliable because of large systematic uncertainties of the neutron multiplicity sorting method used. The experimentally–theoretical method was proposed for evaluating the reaction cross sections data satisfying the reliability criteria. The partial and total reaction cross sections were evaluated for many nuclei. In many cases evaluated data differ noticeably from both the experimental data and the data evaluated before for the IAEA Photonuclear Data Library. Therefore it became evident that the IAEA Library needs to be revised and updated

    Electromagnetic form factors of nucleon resonances from CLAS

    Get PDF
    Exclusive single and double meson photo- and electroproduction reactions are the largest sources of information on the spectrum and structure of nucleon resonances. The excited states of the nucleon manifest as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. Various N* with distinctively different structure appear as unique laboratory where many features of strong QCD can be explored. With combination of nearly 4Ï€ acceptance of the CLAS detector and continuous electron beam (Jefferson Lab, USA) it is possible to obtain physics observables of the major reaction channels in the N* excitation region. The results on the electromagnetic transition form factors of N(1440)1/2+ and N(1520)3/2- are presented

    Electromagnetic form factors of nucleon resonances from CLAS

    Full text link
    Exclusive single and double meson photo- and electroproduction reactions are the largest sources of information on the spectrum and structure of nucleon resonances. The excited states of the nucleon manifest as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. Various N* with distinctively different structure appear as unique laboratory where many features of strong QCD can be explored. With combination of nearly 4Ï€ acceptance of the CLAS detector and continuous electron beam (Jefferson Lab, USA) it is possible to obtain physics observables of the major reaction channels in the N* excitation region. The results on the electromagnetic transition form factors of N(1440)1/2+ and N(1520)3/2- are presented

    New 209Bi photodisintegration data and physical criteria of data reliability

    Get PDF
    The well-known problem of noticeable disagreements between photoneutron cross sections from various experiments was discussed in detail for 209Bi. Data for partial photoneutron reactions cross sections obtained at Livermore (USA) using quasimonoenergetic annihilation photons and the method of neutron multiplicity sorting were analyzed using the objective physical criteria and the experimental-theoretical method for evaluation. Because of significant systematic uncertainties involved in the method for determining the neutron multiplicity, experimental data do not satisfy the criteria of reliability and differ noticeably from the evaluated data. The new experimental data for 209Bi (γ, in) reactions with i = 1–4 were obtained using quasimonochromatic laser Compton-scattering (LCS) γ-ray beams at the NewSUBARU synchrotron radiation facility and the novel technique of direct neutron-multiplicity sorting with a flat-efficiency detector. It was found that new σ(γ, 1n), σ (γ, 2n), and σ (γ, 3n) contradict noticeably to the Livermore data. It was shown that at the same time the new 209Bi photoneutron cross-sections are in good agreement with data evaluated using experimental-theoretical method and assuring the reliability of those

    New

    Full text link
    The well-known problem of noticeable disagreements between photoneutron cross sections from various experiments was discussed in detail for 209Bi. Data for partial photoneutron reactions cross sections obtained at Livermore (USA) using quasimonoenergetic annihilation photons and the method of neutron multiplicity sorting were analyzed using the objective physical criteria and the experimental-theoretical method for evaluation. Because of significant systematic uncertainties involved in the method for determining the neutron multiplicity, experimental data do not satisfy the criteria of reliability and differ noticeably from the evaluated data. The new experimental data for 209Bi (γ, in) reactions with i = 1–4 were obtained using quasimonochromatic laser Compton-scattering (LCS) γ-ray beams at the NewSUBARU synchrotron radiation facility and the novel technique of direct neutron-multiplicity sorting with a flat-efficiency detector. It was found that new σ(γ, 1n), σ (γ, 2n), and σ (γ, 3n) contradict noticeably to the Livermore data. It was shown that at the same time the new 209Bi photoneutron cross-sections are in good agreement with data evaluated using experimental-theoretical method and assuring the reliability of those

    Photoneutron Reaction Data for Nuclear Physics and Astrophysics

    Full text link
    We discuss the role of photoneutron reaction data in nuclear physics and astrophysics in conjunction with the Coordinated Research Project of the International Atomic Energy Agency with the code F41032 (IAEA-CRP F41032)
    corecore