1,210 research outputs found

    Closed formula for the relative entropy of entanglement

    Full text link
    The long-standing problem of finding a closed formula for the relative entropy of entanglement (REE) for two qubits is addressed. A compact-form solution to the inverse problem, which characterizes an entangled state for a given closest separable state, is obtained. Analysis of the formula for a large class of entangled states strongly suggests that a compact analytical solution of the original problem, which corresponds to finding the closest separable state for a given entangled state, can be given only in some special cases. A few applications of the compact-form formula are given to show additivity of the REE, to relate the REE with the Rains upper bound for distillable entanglement, and to show that a Bell state does not have a unique closest separable state.Comment: 7 pages, the title was modified as suggested by the PRA editor

    Dilemma that cannot be resolved by biased quantum coin flipping

    Full text link
    We show that a biased quantum coin flip (QCF) cannot provide the performance of a black-boxed biased coin flip, if it satisfies some fidelity conditions. Although such a QCF satisfies the security conditions of a biased coin flip, it does not realize the ideal functionality, and therefore, does not fulfill the demands for universally composable security. Moreover, through a comparison within a small restricted bias range, we show that an arbitrary QCF is distinguishable from a black-boxed coin flip unless it is unbiased on both sides of parties against insensitive cheating. We also point out the difficulty in developing cheat-sensitive quantum bit commitment in terms of the uncomposability of a QCF.Comment: 5 pages and 1 figure. Accepted versio

    Non-Thermal Emission from Relativistic Electrons in Clusters of Galaxies: A Merger Shock Acceleration Model

    Get PDF
    We have investigated evolution of non-thermal emission from relativistic electrons accelerated at around the shock fronts during merger of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles to extend radio halos. In the contracting phase, radio halos are located at the hot region of ICM, or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and shows rather diffuse distribution.Comment: 19 pages, 5 figures, accepted for publication in Ap

    Use of a novel coaxial guide needle-wire (GNW) combination system for computed tomography guided radiofrequency tumor ablation

    Get PDF
    We developed a novel coaxial system using a fine guide needle wire (GNW) to safely and easily place the radiofrequency needle under CT-guidance. The GNW consists of a fine needle (diameter, 21-gauge; length, 150 mm) and a wire (0.018 inch, 250 mm). An exclusive radiofrequency cannula (14-gauge; 160 mm) was also used. This system was used for the treatment of six hepatocellular carcinomas in six patients. All lesions were located deeper than 10 cm from the needle entry site. This system was useful in performing CT-guided RF ablation for deeply or precariously located liver lesions particularly in patients who are unable to hold their breath

    Two-Temperature Intracluster Medium in Merging Clusters of Galaxies

    Full text link
    We investigate the evolution of intracluster medium during a cluster merger, explicitly considering the relaxation process between the ions and electrons by N-body and hydrodynamical simulations. When two subclusters collide each other, a bow shock is formed between the centers of two substructures and propagate in both directions along the collision axis. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. In the post-shock region the energy is transported from the ions to electrons via Coulomb coupling. However, since the energy exchange timescale depends both on the gas density and temperature, distribution of electron temperature becomes more complex than that of the plasma mean temperature, especially in the expanding phase. After the collision of two subclusters, gas outflow occurs not only along the collision axis but also in its perpendicular direction. The gas which is originally located in the central part of the subclusters moves both in the parallel and perpendicular directions. Since the equilibrium timescale of the gas along these directions is relatively short, temperature difference between ions and electrons is larger in the directions tilted by the angles of ±45∘\pm 45^\circ with respect to the collision axis. The electron temperature could be significantly lower that the plasma mean temperature by ∌50\sim 50 % at most. The significance of our results in the interpretation of X-ray observations is briefly discussed.Comment: 20 pages, 11 figures, Accepted for publication in Ap

    Dynamics of quantum correlations and linear entropy in a multi-qubit-cavity system

    Full text link
    We present a theoretical study of the relationship between entanglement and entropy in multi-qubit quantum optical systems. Specifically we investigate quantitative relations between the concurrence and linear entropy for a two-qubit mixed system, implemented as two two-level atoms interacting with a single-mode cavity field. The dynamical evolutions of the entanglement and entropy, are controlled via time-dependent cavity-atom couplings. Our theoretical findings lead us to propose an alternative measure of entanglement, which could be used to develop a much needed correlation measure for more general multi-partite quantum systems.Comment: New discussions on the generality of entanglement-entropy relationship, one new reference, and other minor changes. 10 pages, 6 figures, accepted for publication in J.Opt. B: "Special Issue on Fluctuations & Noise in Photonics & Quantum Optics.

    Off-Center Mergers of Clusters of Galaxies and Nonequipartition of Electrons and Ions in Intracluster Medium

    Get PDF
    We investigate the dynamical evolution of clusters of galaxies and their observational consequences during off-center mergers, explicitly considering the relaxation process between ions and electrons in intracluster medium by N-body and hydrodynamical simulations. In the contracting phase a bow shock is formed between the two subclusters. The observed temperature between two peaks in this phase depends on the viewing angle even if the geometry of the system seems to be very simple like head-on collisions. Around the most contracting epoch, when we observe merging clusters nearly along the collision axis, they look like spherical relaxed clusters with large temperature gradients. In the expanding phase, spiral bow shocks occur. As in head-on mergers, the electron temperature is significantly lower than the plasma mean one especially in the post-shock regions in the expanding phase. When the systems have relatively large angular momentum, double-peak structures in the X-ray images can survive even after the most contracting epoch. Morphological features in both X-ray images and electron temperature distribution characteristic to off-center mergers are seriously affected by the viewing angle. When the clusters are observed nearly along the collision axis, the distribution of galaxies' line-of-sight (LOS) velocities is a good indicator of mergers. In the contracting phase, an negative kurtosis and a large skewness are expected for nearly equal mass collisions and rather different mass ones, respectively. To obtain statistically significant results, about 1000 galaxies' LOS velocities are required. For nearby clusters (z<0.05z<0.05), large redshift surveys such as 2dF will enable us to study merger dynamics.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    Superconducting electronic state in optimally doped YBa2Cu3O7-d observed with laser-excited angle-resolved photoemission spectroscopy

    Full text link
    Low energy electronic structure of optimally doped YBa2Cu3O7-d is investigated using laser-excited angle-resolved photoemission spectroscopy. The surface state and the CuO chain band that usually overlap the CuO2 plane derived bands are not detected, thus enabling a clear observation of the bulk superconducting state. The observed bilayer splitting of the Fermi surface is ~0.08 angstrom^{-1} along the (0,0)-(pi,pi) direction, significantly larger than Bi2Sr2CaCu2O8+d. The kink structure of the band dispersion reflecting the renormalization effect at ~60 meV shows up similarly as in other hole-doped cuprates. The momentum-dependence of the superconducting gap shows d_{x^2-y^2}-wave like amplitude, but exhibits a nonzero minimum of ~12 meV along the (0,0)-(pi,pi) direction. Possible origins of such an unexpected "nodeless" gap behavior are discussed.Comment: 9 pages, 10 figures; revised version accepted for publication in Phys. Rev.
    • 

    corecore