972 research outputs found

    Perovskite Manganites Hosting Versatile Multiferroic Phases with Symmetric and Antisymmetric Exchange Strictions

    Full text link
    Complete magnetoelectric (ME) phase diagrams of orthorhombic RRMnO3_{3} with and without magnetic moments on the RR ions have been established. Three kinds of multiferroic ground states, the abab-cycloidal, the bcbc-cycloidal, and the collinear EE-type phases, have been identified by the distinct ME responses. The electric polarization of the EE-type phase dominated by the symmetric spin exchange (bmSicdotbmSjbm{S}_{i} cdot bm{S}_{j}) is more than 10 times as large as that of the bcbc-cycloidal phase dominated by the antisymmetric one (bmSitimesbmSjbm{S}_{i} times bm{S}_{j}), and the ME response is enhanced near the bicritical phase boundary between these multiferroic phases of different origins. These findings will provide an important clue for the development of the magnetically induced multiferroics.Comment: 5 pages, 3 figure

    Synchrotron Radiation from the Galactic Center in Decaying Dark Matter Scenario

    Full text link
    We discuss the synchrotron radiation flux from the Galactic center in unstable dark matter scenario. Motivated by the anomalous excess of the positron fraction recently reported by the PAMELA collaboration, we consider the case that the dark matter particle is unstable (and long-lived), and that energetic electron and positron are produced by the decay of dark matter. Then, the emitted electron and positron becomes the source of the synchrotron radiation. We calculate the synchrotron radiation flux for models of decaying dark matter, which can explain the PAMELA positron excess. Taking the lifetime of the dark matter of O(10^26 sec), which is the suggested value to explain the PAMELA anomaly, the synchrotron radiation flux is found to be O(1 kJy/str) or smaller, depending on the particle-physics and cosmological parameters.Comment: 20 pages, 6 figure

    Electromagnons in the multiferroic state of perovskite manganites with symmetric-exchange striction

    Get PDF
    We have investigated electrically-active magnetic excitations (electromagnons) in perovskite manganites with the EE-type (up-up-down-down) spin structure by terahertz spectroscopy. Eu1−x_{1-x}Yx_xMnO3_3 (0.1≤x≤\le x\le1) and Y1−y_{1-y}Luy_yMnO3_3 (0≤y≤\le y\le1) without magnetic ff-moments, which host collinear sinusoidal, AA-type, cycloidal, and EE-type spin orders, are used to examine the systematics of possible electromagnons. Three-peak structures (23, 35, 45 cm−1^{-1}) of magnetic origin show up in the EE-type phase with little composition (yy) dependence of frequencies, making a contrast with the electromagnons observed in the cycloidal-spin (x≤0.8x\le0.8) phases. One of these electromagnon is ascribed to the zone-edge magnon mode based on the calculated magnon dispersions.Comment: 5 pages, 4 figure

    Electromagnons in the multiferroic state of perovskite manganites with symmetric-exchange striction

    Full text link
    We have investigated electrically-active magnetic excitations (electromagnons) in perovskite manganites with the EE-type (up-up-down-down) spin structure by terahertz spectroscopy. Eu1−x_{1-x}Yx_xMnO3_3 (0.1≤x≤\le x\le1) and Y1−y_{1-y}Luy_yMnO3_3 (0≤y≤\le y\le1) without magnetic ff-moments, which host collinear sinusoidal, AA-type, cycloidal, and EE-type spin orders, are used to examine the systematics of possible electromagnons. Three-peak structures (23, 35, 45 cm−1^{-1}) of magnetic origin show up in the EE-type phase with little composition (yy) dependence of frequencies, making a contrast with the electromagnons observed in the cycloidal-spin (x≤0.8x\le0.8) phases. One of these electromagnon is ascribed to the zone-edge magnon mode based on the calculated magnon dispersions.Comment: 5 pages, 4 figure

    Higgs Properties and Fourth Generation Leptons

    Get PDF
    It is possible that there are additional vector-like generations where the quarks have mass terms that do not originate from weak symmetry breaking, but the leptons only get mass through weak symmetry breaking. We discuss the impact that the new leptons have on Higgs boson decay branching ratios and on the range of allowed Higgs masses in such a model (with a single new vector-like generation). We find that if the fourth generation leptons are too heavy to be produced in Higgs decay, then the new leptons reduce the branching ratio for h -> gamma gamma to about 30% of its standard-model value. The dependence of this branching ratio on the new charged lepton masses is weak. Furthermore the expected Higgs production rate at the LHC is very near its standard-model value if the new quarks are much heavier than the weak scale. If the new quarks have masses near the cutoff for the theory then for cutoffs greater than 10^15 GeV, the new lepton masses cannot be much heavier than about 100 GeV and the Higgs mass must have a value around 175 GeV.Comment: 8 pages, 8 figures, published versio
    • …
    corecore