17 research outputs found

    Automated detection of retinal nonperfusion area caused by retinal vein occlusion

    Get PDF
    We aimed to assess the ability of deep learning (DL) and support vector machine (SVM) to detect a nonperfusion area (NPA) caused by retinal vein occlusion (RVO) with optical coherence tomography angiography (OCTA) images. The study included 322 OCTA images (normal: 148; NPA owing to RVO: 174 [128 branch RVO images and 46 central RVO images]). Training to construct the DL model using deep convolutional neural network (DNN) algorithms was provided using OCTA images. The SVM used a scikit-learn library with a radial basis function kernel. The area under the curve (AUC), sensitivity and specificity for detecting an NPA were examined. We compared the diagnostic ability (sensitivity, specificity and average required time) between the DNN, SVM and seven ophthalmologists. Heat maps were generated. With regard to the DNN, the mean AUC, sensitivity, specificity and average required time for distinguishing RVO OCTA images with an NPA from normal OCTA images were 0.986, 93.7%, 97.3% and 176.9 s, respectively. With regard to SVM, the mean AUC, sensitivity, and specificity were 0.880, 79.3%, and 81.1%, respectively. With regard to the seven ophthalmologists, the mean AUC, sensitivity, specificity and average required time were 0.962, 90.8%, 89.2%, and 700.6 s, respectively. The DNN focused on the foveal avascular zone and NPA in heat maps. The performance of the DNN was significantly better than that of SVM in all parameters (p < 0.01, all) and that of the ophthalmologists in AUC and specificity (p < 0.01, all). The combination of DL and OCTA images had high accuracy for the detection of an NPA, and it might be useful in clinical practice and retinal screening

    Accurate tomographic detection of myopic macular diseases

    Get PDF
    This study examined and compared outcomes of deep learning (DL) in identifying swept-source optical coherence tomography (OCT) images without myopic macular lesions [i.e., no high myopia (nHM) vs. high myopia (HM)], and OCT images with myopic macular lesions [e.g., myopic choroidal neovascularization (mCNV) and retinoschisis (RS)]. A total of 910 SS-OCT images were included in the study as follows and analyzed by k-fold cross-validation (k = 5) using DL's renowned model, Visual Geometry Group-16: nHM, 146 images; HM, 531 images; mCNV, 122 images; and RS, 111 images (n = 910). The binary classification of OCT images with or without myopic macular lesions; the binary classification of HM images and images with myopic macular lesions (i.e., mCNV and RS images); and the ternary classification of HM, mCNV, and RS images were examined. Additionally, sensitivity, specificity, and the area under the curve (AUC) for the binary classifications as well as the correct answer rate for ternary classification were examined. The classification results of OCT images with or without myopic macular lesions were as follows: AUC, 0.970; sensitivity, 90.6%; specificity, 94.2%. The classification results of HM images and images with myopic macular lesions were as follows: AUC, 1.000; sensitivity, 100.0%; specificity, 100.0%. The correct answer rate in the ternary classification of HM images, mCNV images, and RS images were as follows: HM images, 96.5%; mCNV images, 77.9%; and RS, 67.6% with mean, 88.9%.Using noninvasive, easy-to-obtain swept-source OCT images, the DL model was able to classify OCT images without myopic macular lesions and OCT images with myopic macular lesions such as mCNV and RS with high accuracy. The study results suggest the possibility of conducting highly accurate screening of ocular diseases using artificial intelligence, which may improve the prevention of blindness and reduce workloads for ophthalmologists

    Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images

    Get PDF
    Evaluating the discrimination ability of a deep convolution neural network for ultrawide-field pseudocolor imaging and ultrawide-field autofluorescence of retinitis pigmentosa. In total, the 373 ultrawide-field pseudocolor and ultrawide-field autofluorescence images (150, retinitis pigmentosa; 223, normal) obtained from the patients who visited the Department of Ophthalmology, Tsukazaki Hospital were used. Training with a convolutional neural network on these learning data objects was conducted. We examined the K-fold cross validation (K = 5). The mean area under the curve of the ultrawide-field pseudocolor group was 0.998 (95% confidence interval (CI) [0.9953–1.0]) and that of the ultrawide-field autofluorescence group was 1.0 (95% CI [0.9994–1.0]). The sensitivity and specificity of the ultrawide-field pseudocolor group were 99.3% (95% CI [96.3%–100.0%]) and 99.1% (95% CI [96.1%–99.7%]), and those of the ultrawide-field autofluorescence group were 100% (95% CI [97.6%–100%]) and 99.5% (95% CI [96.8%–99.9%]), respectively. Heatmaps were in accordance with the clinician’s observations. Using the proposed deep neural network model, retinitis pigmentosa can be distinguished from healthy eyes with high sensitivity and specificity on ultrawide-field pseudocolor and ultrawide-field autofluorescence images

    Prediction of age and brachial-ankle pulse-wave velocity using ultra-wide-field pseudo-color images by deep learning

    Get PDF
    This study examined whether age and brachial-ankle pulse-wave velocity (baPWV) can be predicted with ultra-wide-field pseudo-color (UWPC) images using deep learning (DL). We examined 170 UWPC images of both eyes of 85 participants (40 men and 45 women, mean age: 57.5 ± 20.9 years). Three types of images were included (total, central, and peripheral) and analyzed by k-fold cross-validation (k = 5) using Visual Geometry Group-16. After bias was eliminated using the generalized linear mixed model, the standard regression coefficients (SRCs) between actual age and baPWV and predicted age and baPWV from the UWPC images by the neural network were calculated, and the prediction accuracies of the DL model for age and baPWV were examined. The SRC between actual age and predicted age by the neural network was 0.833 for all images, 0.818 for central images, and 0.649 for peripheral images (all P < 0.001) and between the actual baPWV and the predicted baPWV was 0.390 for total images, 0.419 for central images, and 0.312 for peripheral images (all P < 0.001). These results show the potential prediction capability of DL for age and vascular aging and could be useful for disease prevention and early treatment

    Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy

    Get PDF
    The aim of this study is to assess the performance of two machine-learning technologies, namely, deep learning (DL) and support vector machine (SVM) algorithms, for detecting central retinal vein occlusion (CRVO) in ultrawide-field fundus images. Images from 125 CRVO patients (n = 125 images) and 202 non-CRVO normal subjects (n = 238 images) were included in this study. Training to construct the DL model using deep convolutional neural network algorithms was provided using ultrawide-field fundus images. The SVM uses scikit-learn library with a radial basis function kernel. The diagnostic abilities of DL and the SVM were compared by assessing their sensitivity, specificity, and area under the curve (AUC) of the receiver operating characteristic curve for CRVO. For diagnosing CRVO, the DL model had a sensitivity of 98.4% (95% confidence interval (CI), 94.3–99.8%) and a specificity of 97.9% (95% CI, 94.6–99.1%) with an AUC of 0.989 (95% CI, 0.980–0.999). In contrast, the SVM model had a sensitivity of 84.0% (95% CI, 76.3–89.3%) and a specificity of 87.5% (95% CI, 82.7–91.1%) with an AUC of 0.895 (95% CI, 0.859–0.931). Thus, the DL model outperformed the SVM model in all indices assessed (P < 0.001 for all). Our data suggest that a DL model derived using ultrawide-field fundus images could distinguish between normal and CRVO images with a high level of accuracy and that automatic CRVO detection in ultrawide-field fundus ophthalmoscopy is possible. This proposed DL-based model can also be used in ultrawide-field fundus ophthalmoscopy to accurately diagnose CRVO and improve medical care in remote locations where it is difficult for patients to attend an ophthalmic medical center

    Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images

    Get PDF
    Evaluating the discrimination ability of a deep convolution neural network for ultrawide-field pseudocolor imaging and ultrawide-field autofluorescence of retinitis pigmentosa. In total, the 373 ultrawide-field pseudocolor and ultrawide-field autofluorescence images (150, retinitis pigmentosa; 223, normal) obtained from the patients who visited the Department of Ophthalmology, Tsukazaki Hospital were used. Training with a convolutional neural network on these learning data objects was conducted. We examined the K-fold cross validation (K = 5). The mean area under the curve of the ultrawide-field pseudocolor group was 0.998 (95% confidence interval (CI) [0.9953–1.0]) and that of the ultrawide-field autofluorescence group was 1.0 (95% CI [0.9994–1.0]). The sensitivity and specificity of the ultrawide-field pseudocolor group were 99.3% (95% CI [96.3%–100.0%]) and 99.1% (95% CI [96.1%–99.7%]), and those of the ultrawide-field autofluorescence group were 100% (95% CI [97.6%–100%]) and 99.5% (95% CI [96.8%–99.9%]), respectively. Heatmaps were in accordance with the clinician’s observations. Using the proposed deep neural network model, retinitis pigmentosa can be distinguished from healthy eyes with high sensitivity and specificity on ultrawide-field pseudocolor and ultrawide-field autofluorescence images

    Deep Learning-Based System for Preoperative Safety Management in Cataract Surgery

    No full text
    An artificial intelligence-based system was implemented for preoperative safety management in cataract surgery, including facial recognition, laterality (right and left eye) confirmation, and intraocular lens (IOL) parameter verification. A deep-learning model was constructed with a face identification development kit for facial recognition, the You Only Look Once Version 3 (YOLOv3) algorithm for laterality confirmation, and the Visual Geometry Group-16 (VGG-16) for IOL parameter verification. In 171 patients who were undergoing phacoemulsification and IOL implantation, a mobile device (iPad mini, Apple Inc.) camera was used to capture patients’ faces, location of surgical drape aperture, and IOL parameter descriptions on the packages, which were then checked with the information stored in the referral database. The authentication rates on the first attempt and after repeated attempts were 92.0% and 96.3% for facial recognition, 82.5% and 98.2% for laterality confirmation, and 67.4% and 88.9% for IOL parameter verification, respectively. After authentication, both the false rejection rate and the false acceptance rate were 0% for all three parameters. An artificial intelligence-based system for preoperative safety management was implemented in real cataract surgery with a passable authentication rate and very high accuracy

    Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning.

    No full text
    We aimed to assess the ability of deep learning (DL) and support vector machine (SVM) to detect a nonperfusion area (NPA) caused by retinal vein occlusion (RVO) with optical coherence tomography angiography (OCTA) images. The study included 322 OCTA images (normal: 148; NPA owing to RVO: 174 [128 branch RVO images and 46 central RVO images]). Training to construct the DL model using deep convolutional neural network (DNN) algorithms was provided using OCTA images. The SVM used a scikit-learn library with a radial basis function kernel. The area under the curve (AUC), sensitivity and specificity for detecting an NPA were examined. We compared the diagnostic ability (sensitivity, specificity and average required time) between the DNN, SVM and seven ophthalmologists. Heat maps were generated. With regard to the DNN, the mean AUC, sensitivity, specificity and average required time for distinguishing RVO OCTA images with an NPA from normal OCTA images were 0.986, 93.7%, 97.3% and 176.9 s, respectively. With regard to SVM, the mean AUC, sensitivity, and specificity were 0.880, 79.3%, and 81.1%, respectively. With regard to the seven ophthalmologists, the mean AUC, sensitivity, specificity and average required time were 0.962, 90.8%, 89.2%, and 700.6 s, respectively. The DNN focused on the foveal avascular zone and NPA in heat maps. The performance of the DNN was significantly better than that of SVM in all parameters (p < 0.01, all) and that of the ophthalmologists in AUC and specificity (p < 0.01, all). The combination of DL and OCTA images had high accuracy for the detection of an NPA, and it might be useful in clinical practice and retinal screening

    Accuracy of a deep convolutional neural network in the detection of myopic macular diseases using swept-source optical coherence tomography.

    No full text
    This study examined and compared outcomes of deep learning (DL) in identifying swept-source optical coherence tomography (OCT) images without myopic macular lesions [i.e., no high myopia (nHM) vs. high myopia (HM)], and OCT images with myopic macular lesions [e.g., myopic choroidal neovascularization (mCNV) and retinoschisis (RS)]. A total of 910 SS-OCT images were included in the study as follows and analyzed by k-fold cross-validation (k = 5) using DL's renowned model, Visual Geometry Group-16: nHM, 146 images; HM, 531 images; mCNV, 122 images; and RS, 111 images (n = 910). The binary classification of OCT images with or without myopic macular lesions; the binary classification of HM images and images with myopic macular lesions (i.e., mCNV and RS images); and the ternary classification of HM, mCNV, and RS images were examined. Additionally, sensitivity, specificity, and the area under the curve (AUC) for the binary classifications as well as the correct answer rate for ternary classification were examined. The classification results of OCT images with or without myopic macular lesions were as follows: AUC, 0.970; sensitivity, 90.6%; specificity, 94.2%. The classification results of HM images and images with myopic macular lesions were as follows: AUC, 1.000; sensitivity, 100.0%; specificity, 100.0%. The correct answer rate in the ternary classification of HM images, mCNV images, and RS images were as follows: HM images, 96.5%; mCNV images, 77.9%; and RS, 67.6% with mean, 88.9%.Using noninvasive, easy-to-obtain swept-source OCT images, the DL model was able to classify OCT images without myopic macular lesions and OCT images with myopic macular lesions such as mCNV and RS with high accuracy. The study results suggest the possibility of conducting highly accurate screening of ocular diseases using artificial intelligence, which may improve the prevention of blindness and reduce workloads for ophthalmologists
    corecore