566 research outputs found

    Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields

    Full text link
    The dynamical structure factor of the S=1/2 bond-alternating spin chain with a next-nearest-neighbor interaction in magnetic field is investigated using the continued fraction method based on the Lanczos algorithm. When the plateau exists on the magnetization curve, the longitudinal dynamical structure factor shows a large intensity with a periodic dispersion relation, while the transverse one shows a large intensity with an almost dispersionless mode. The periodicity and the amplitude of the dispersion relation in the longitudinal dynamical structure factor are sensitive to the coupling constants. The dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is also calculated in the strong interchain-coupling regime. The dynamical structure factor shows gapless or gapful behavior depending on the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of Japan, vol. 69, no. 10, (2000

    Spin dynamics of a one-dimensional spin-1/2 fully anisotropic Ising-like antiferromagnet in a transverse magnetic field

    Full text link
    We consider the one-dimensional Ising-like fully anisotropic S=1/2 Heisenberg antiferromagnetic Hamiltonian and study the dynamics of domain wall excitations in the presence of transverse magnetic field hxh_x. We obtain dynamical spin correlation functions along the magnetic field Sxx(q,ω)S^{xx}(q,\omega) and perpendicular to it Syy(q,ω)S^{yy}(q,\omega). It is shown that the line shapes of Sxx(q,ω)S^{xx}(q,\omega) and Syy(q,ω)S^{yy}(q,\omega) are purely symmetric at the zone-boundary. It is observed in Syy(q,ω)S^{yy}(q,\omega) for π/2<q<π\pi/2<q<\pi that the spectral weight moves toward low energy side with the increase of hxh_x. This model is applicable to study the spin dynamics of CsCoCl3_3 in the presence of weak interchain interactions.Comment: 19 pages, LaTeX, 12 eps figure

    Polarized Neutron Inelastic Scattering Study of the Anisotropic Magnetic Fluctuations in the Quasi-1D Ising-like Antiferromagnet TlCoCl3_3

    Full text link
    Polarized neutron inelastic scattering experiments have been carried out in the quasi-1D Ising-like antiferromagnet TlCoCl3_3. We observed the longitudinal magnetic fluctuation Szz(Q,ω)S_{zz} (Q, \omega) for the spin-wave excitation continuum, which has not been observed in the unpolarized neutron inelastic scattering experiments of the quasi-1D Ising-like antiferromagnets CsCoCl3_3 and TlCoCl3_3 so far, together with the transverse magnetic fluctuation Sxx(Q,ω)S_{xx} (Q, \omega). We compared both obtained intensities of Sxx(Q,ω)S_{xx} (Q, \omega) and Szz(Q,ω)S_{zz} (Q, \omega) with the perturbation theory from the pure Ising limit by Ishimura and Shiba, and a semi-quantitative agreement was found.Comment: 5 pages, 5 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn. Vol. 75 (2006) No.

    Nonlinear Parabolic Equations arising in Mathematical Finance

    Full text link
    This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387

    Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3

    Full text link
    Inelastic neutron scattering profiles of spin waves in the dilute quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J mode. The Q dependence of the energy of this spin wave mode follows the analytical prediction omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure

    Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations

    Get PDF
    大洋の東西で異なるマイワシの環境応答 --耳石が示すグローバル生存戦略の鍵--. 京都大学プレスリリース. 2022-10-17.Massive populations of sardines inhabit both the western and eastern boundaries of the world’s subtropical ocean basins, supporting both commercial fisheries and populations of marine predators. Sardine populations in western and eastern boundary current systems have responded oppositely to decadal scale anomalies in ocean temperature, but the mechanism for differing variability has remained unclear. Here, based on otolith microstructure and high-resolution stable isotope analyses, we show that habitat temperature, early life growth rates, energy expenditure, metabolically optimal temperature, and, most importantly, the relationship between growth rate and temperature are remarkably different between the two subpopulations in the western and eastern North Pacific. Varying metabolic responses to environmental changes partly explain the contrasting growth responses. Consistent differences in the life-history traits are observed between subpopulations in the western and eastern boundary current systems around South Africa. These growth and survival characteristics can facilitate the contrasting responses of sardine populations to climate change

    Thermodynamic Properties and Elementary Excitations in Quantum Sine-Gordon Spin System KCuGaF6

    Full text link
    Thermodynamic properties and elementary excitations in S=1/2S=1/2 one-dimensional Heisenberg antiferromagnet KCuGaF6_6 were investigated by magnetic susceptibility, specific heat and ESR measurements. Due to the Dzyaloshinsky-Moriya interaction with alternating DD-vectors and/or the staggered gg-tensor, the staggered magnetic field is induced when subjected to external magnetic field. Specific heat in magnetic field clearly shows the formation of excitation gap, which is attributed to the staggered magnetic field. The specific heat data was analyzed on the basis of the quantum sine-Gordon (SG) model. We observed many ESR modes including one soliton and three breather excitations characteristic of the quantum SG model.Comment: 4 pages, 5 figures, to appear in J. Phys. Soc. Jpn., vol. 76, no.

    Motion of Bound Domain Walls in a Spin Ladder

    Full text link
    The elementary excitation spectrum of the spin-12\frac{1}{2} antiferromagnetic (AFM) Heisenberg chain is described in terms of a pair of freely propagating spinons. In the case of the Ising-like Heisenberg Hamiltonian spinons can be interpreted as domain walls (DWs) separating degenerate ground states. In dimension d>1d>1, the issue of spinons as elementary excitations is still unsettled. In this paper, we study two spin-12\frac{1}{2} AFM ladder models in which the individual chains are described by the Ising-like Heisenberg Hamiltonian. The rung exchange interactions are assumed to be pure Ising-type in one case and Ising-like Heisenberg in the other. Using the low-energy effective Hamiltonian approach in a perturbative formulation, we show that the spinons are coupled in bound pairs. In the first model, the bound pairs are delocalized due to a four-spin ring exchange term in the effective Hamiltonian. The appropriate dynamic structure factor is calculated and the associated lineshape is found to be almost symmetric in contrast to the 1d case. In the case of the second model, the bound pair of spinons lowers its kinetic energy by propagating between chains. The results obtained are consistent with recent theoretical studies and experimental observations on ladder-like materials.Comment: 12 pages, 7 figure

    Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study

    Full text link
    We consider a lattice-gas model with an infinite range pairwise noncovex interaction. It might be relevant, for example, for adsorption of alkaline elements on W(112) and Mo(112). We study a competition between the effective dipole-dipole and indirect interactions. The resulting ground state phase diagrams are analysed (numerically) in detail. We have found that for some model parameters the phase diagrams contain a region dominated by several phases only with periods up to nine lattice constants. The remaining phase diagrams reveal a complex structure of usually long periodic phases. We also discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996), in pres

    Direct Observation of Field-Induced Incommensurate Fluctuations in a One-Dimensional S=1/2 Antiferromagnet

    Full text link
    Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the first direct experimental evidence for field-dependent incommensurate low energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain. Unexpected was a field-induced energy gap Δ(H)Hα\Delta(H) \propto H^\alpha, where α=0.65(3)\alpha = 0.65(3) as determined from specific heat measurements. At H = 7 T (g\mu_B H/J = 0.52), the magnitude of the gap varies from 0.06 - 0.3 J depending on the orientation of the applied field.Comment: 11 pages, 5 postscript figures, LaTeX, Submitted to PRL 3/31/97, e-mail comments to [email protected]
    corecore