566 research outputs found
Dynamical Structure Factors of the S=1/2 Bond-Alternating Spin Chain with a Next-Nearest-Neighbor Interaction in Magnetic Fields
The dynamical structure factor of the S=1/2 bond-alternating spin chain with
a next-nearest-neighbor interaction in magnetic field is investigated using the
continued fraction method based on the Lanczos algorithm. When the plateau
exists on the magnetization curve, the longitudinal dynamical structure factor
shows a large intensity with a periodic dispersion relation, while the
transverse one shows a large intensity with an almost dispersionless mode. The
periodicity and the amplitude of the dispersion relation in the longitudinal
dynamical structure factor are sensitive to the coupling constants. The
dynamical structure factor of the S=1/2 two-leg ladder in magnetic field is
also calculated in the strong interchain-coupling regime.
The dynamical structure factor shows gapless or gapful behavior depending on
the wave vector along the rung.Comment: 8 pages, 4 figures, to appear in Journal of the Physical Society of
Japan, vol. 69, no. 10, (2000
Spin dynamics of a one-dimensional spin-1/2 fully anisotropic Ising-like antiferromagnet in a transverse magnetic field
We consider the one-dimensional Ising-like fully anisotropic S=1/2 Heisenberg
antiferromagnetic Hamiltonian and study the dynamics of domain wall excitations
in the presence of transverse magnetic field . We obtain dynamical spin
correlation functions along the magnetic field and
perpendicular to it . It is shown that the line shapes of
and are purely symmetric at the
zone-boundary. It is observed in for that the
spectral weight moves toward low energy side with the increase of . This
model is applicable to study the spin dynamics of CsCoCl in the presence of
weak interchain interactions.Comment: 19 pages, LaTeX, 12 eps figure
Polarized Neutron Inelastic Scattering Study of the Anisotropic Magnetic Fluctuations in the Quasi-1D Ising-like Antiferromagnet TlCoCl
Polarized neutron inelastic scattering experiments have been carried out in
the quasi-1D Ising-like antiferromagnet TlCoCl. We observed the
longitudinal magnetic fluctuation for the spin-wave
excitation continuum, which has not been observed in the unpolarized neutron
inelastic scattering experiments of the quasi-1D Ising-like antiferromagnets
CsCoCl and TlCoCl so far, together with the transverse magnetic
fluctuation . We compared both obtained intensities of
and with the perturbation theory from
the pure Ising limit by Ishimura and Shiba, and a semi-quantitative agreement
was found.Comment: 5 pages, 5 figures, jpsj2.cls, to be published in J. Phys. Soc. Jpn.
Vol. 75 (2006) No.
Nonlinear Parabolic Equations arising in Mathematical Finance
This survey paper is focused on qualitative and numerical analyses of fully
nonlinear partial differential equations of parabolic type arising in financial
mathematics. The main purpose is to review various non-linear extensions of the
classical Black-Scholes theory for pricing financial instruments, as well as
models of stochastic dynamic portfolio optimization leading to the
Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both
problems can be represented by solutions to nonlinear parabolic equations.
Qualitative analysis will be focused on issues concerning the existence and
uniqueness of solutions. In the numerical part we discuss a stable
finite-volume and finite difference schemes for solving fully nonlinear
parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387
Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3
Inelastic neutron scattering profiles of spin waves in the dilute
quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have
been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin
Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J
mode. The Q dependence of the energy of this spin wave mode follows the
analytical prediction
omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by
Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure
Contrasting life-history responses to climate variability in eastern and western North Pacific sardine populations
大洋の東西で異なるマイワシの環境応答 --耳石が示すグローバル生存戦略の鍵--. 京都大学プレスリリース. 2022-10-17.Massive populations of sardines inhabit both the western and eastern boundaries of the world’s subtropical ocean basins, supporting both commercial fisheries and populations of marine predators. Sardine populations in western and eastern boundary current systems have responded oppositely to decadal scale anomalies in ocean temperature, but the mechanism for differing variability has remained unclear. Here, based on otolith microstructure and high-resolution stable isotope analyses, we show that habitat temperature, early life growth rates, energy expenditure, metabolically optimal temperature, and, most importantly, the relationship between growth rate and temperature are remarkably different between the two subpopulations in the western and eastern North Pacific. Varying metabolic responses to environmental changes partly explain the contrasting growth responses. Consistent differences in the life-history traits are observed between subpopulations in the western and eastern boundary current systems around South Africa. These growth and survival characteristics can facilitate the contrasting responses of sardine populations to climate change
Thermodynamic Properties and Elementary Excitations in Quantum Sine-Gordon Spin System KCuGaF6
Thermodynamic properties and elementary excitations in
one-dimensional Heisenberg antiferromagnet KCuGaF were investigated by
magnetic susceptibility, specific heat and ESR measurements. Due to the
Dzyaloshinsky-Moriya interaction with alternating -vectors and/or the
staggered -tensor, the staggered magnetic field is induced when subjected to
external magnetic field. Specific heat in magnetic field clearly shows the
formation of excitation gap, which is attributed to the staggered magnetic
field. The specific heat data was analyzed on the basis of the quantum
sine-Gordon (SG) model. We observed many ESR modes including one soliton and
three breather excitations characteristic of the quantum SG model.Comment: 4 pages, 5 figures, to appear in J. Phys. Soc. Jpn., vol. 76, no.
Motion of Bound Domain Walls in a Spin Ladder
The elementary excitation spectrum of the spin-
antiferromagnetic (AFM) Heisenberg chain is described in terms of a pair of
freely propagating spinons. In the case of the Ising-like Heisenberg
Hamiltonian spinons can be interpreted as domain walls (DWs) separating
degenerate ground states. In dimension , the issue of spinons as
elementary excitations is still unsettled. In this paper, we study two
spin- AFM ladder models in which the individual chains are
described by the Ising-like Heisenberg Hamiltonian. The rung exchange
interactions are assumed to be pure Ising-type in one case and Ising-like
Heisenberg in the other. Using the low-energy effective Hamiltonian approach in
a perturbative formulation, we show that the spinons are coupled in bound
pairs. In the first model, the bound pairs are delocalized due to a four-spin
ring exchange term in the effective Hamiltonian. The appropriate dynamic
structure factor is calculated and the associated lineshape is found to be
almost symmetric in contrast to the 1d case. In the case of the second model,
the bound pair of spinons lowers its kinetic energy by propagating between
chains. The results obtained are consistent with recent theoretical studies and
experimental observations on ladder-like materials.Comment: 12 pages, 7 figure
Ground states of a one-dimensional lattice-gas model with an infinite range nonconvex interaction. A numerical study
We consider a lattice-gas model with an infinite range pairwise noncovex
interaction. It might be relevant, for example, for adsorption of alkaline
elements on W(112) and Mo(112). We study a competition between the effective
dipole-dipole and indirect interactions. The resulting ground state phase
diagrams are analysed (numerically) in detail. We have found that for some
model parameters the phase diagrams contain a region dominated by several
phases only with periods up to nine lattice constants. The remaining phase
diagrams reveal a complex structure of usually long periodic phases. We also
discuss a possible role of surace states in phase transitions.Comment: 16 pages, 5 Postscript figures; Physical Review B15 (15 August 1996),
in pres
Direct Observation of Field-Induced Incommensurate Fluctuations in a One-Dimensional S=1/2 Antiferromagnet
Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the
first direct experimental evidence for field-dependent incommensurate low
energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes
occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as
predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain.
Unexpected was a field-induced energy gap , where
as determined from specific heat measurements. At H = 7 T
(g\mu_B H/J = 0.52), the magnitude of the gap varies from 0.06 - 0.3 J
depending on the orientation of the applied field.Comment: 11 pages, 5 postscript figures, LaTeX, Submitted to PRL 3/31/97,
e-mail comments to [email protected]
- …