149 research outputs found

    Strong valence fluctuation in the quantum critical heavy fermion superconductor beta-YbAlB4: A hard x-ray photoemission study

    Full text link
    Electronic structures of the quantum critical superconductor beta-YbAlB4 and its polymorph alpha-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ~2.73 and ~2.75 for alpha- and beta-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in beta-YbAlB4.Comment: 4 pages, 3 figures, revised version accepted for publication in PR

    Recoil effects of photoelectrons in a solid

    Full text link
    High energy resolution C 1ss photoelectron spectra of graphite were measured at the excitation energy of 340, 870, 5950 and 7940eV using synchrotron radiation. On increasing the excitation energy, i.e., increasing kinetic energy of the photoelectron, the bulk origin C 1ss peak position shifts to higher binding energies. This systematic shift is due to the kinetic energy loss of the high-energy photoelectron by kicking the atom, and is clear evidence of the recoil effect in photoelectron emission. It is also observed that the asymmetric broadening increases for the higher energy photoelectrons. All these recoil effects can be quantified in the same manner as the M\"ossbauer effect for γ\gamma-ray emission from nuclei embedded in crystals.Comment: 4 pages, 2 figure

    Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO2_2

    Full text link
    The temperature (TT) dependent metal-insulator transition (MIT) in VO2_2 is investigated using bulk sensitive hard x-ray (∼\sim 8 keV) valence band, core level, and V 2p−3dp-3d resonant photoemission spectroscopy (PES). The valence band and core level spectra are compared with full-multiplet cluster model calculations including a coherent screening channel. Across the MIT, V 3dd spectral weight transfer from the coherent (d1C‾d^1\underbar{\it {C}} final) states at Fermi level to the incoherent (d0+d1L‾d^{0}+d^1\underbar{\it {L}} final) states, corresponding to the lower Hubbard band, lead to gap-formation. The spectral shape changes in V 1ss and V 2pp core levels as well as the valence band are nicely reproduced from a cluster model calculations, providing electronic structure parameters. Resonant-PES finds that the d1L‾d^1\underbar{\it{L}} states resonate across the V 2p−3dp-3d threshold in addition to the d0d^{0} and d1C‾d^1\underbar{\it {C}} states. The results support a Mott-Hubbard transition picture for the first order MIT in VO2_2.Comment: 6 pages, 3 figures. to be published in Phys. Rev.

    Revisiting the valence-band and core-level photoemission spectra of NiO

    Full text link
    We have re-examined the valence-band (VB) and core-level electronic structure of NiO by means of hard and soft x-ray photoemission spectroscopy (PES). The spectral weight of the lowest energy state found to be enhanced in the bulk sensitive Ni 2p core-level PES. A configuration-interaction model including the bound state screening has shown significant agreement with the core-level spectra, and the off and on-resonance VB spectra. These results identify the lowest energy state in core-level and VB-PES as the Zhang-Rice doublet bound state, consistent with the spin-fermion model and recent ab initio calculation with dynamical mean-field theory (LDA + DMFT).Comment: 4 pages, 3 figure

    Evidence for a correlated insulator to antiferromagnetic metal transition in CrN

    Full text link
    We investigate the electronic structure of Chromium Nitride (CrN) across the first-order magneto-structural transition at T_N ~ 286 K. Resonant photoemission spectroscopy shows a gap in the 3d partial density of states at the Fermi level and an On-site Coulomb energy U ~ 4.5 eV, indicating strong electron-electron correlations. Bulk-sensitive high resolution (6 meV) laser photoemission reveals a clear Fermi edge indicating an antiferromagnetic metal below T_N. Hard x-ray Cr 2p core-level spectra show T-dependent changes across T_N which originate from screening due to coherent states as substantiated by cluster model calculations using the experimentally observed U. The electrical resistivity confirms an insulator above T_N (E_g ~ 70 meV) which becomes a disordered metal below T_N. The results indicate CrN transforms from a correlated insulator to an antiferromagnetic metal, coupled to the magneto-structural transition.Comment: Submitted to Physical Review Letters (February 2010) 11 pages, 3 figures in the main text, 1 Supplementary Informatio
    • …
    corecore