1,238 research outputs found

    Applying Machine Translation to Two-Stage Cross-Language Information Retrieval

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, needs a translation of queries and/or documents, so as to standardize both of them into a common representation. For this purpose, the use of machine translation is an effective approach. However, computational cost is prohibitive in translating large-scale document collections. To resolve this problem, we propose a two-stage CLIR method. First, we translate a given query into the document language, and retrieve a limited number of foreign documents. Second, we machine translate only those documents into the user language, and re-rank them based on the translation result. We also show the effectiveness of our method by way of experiments using Japanese queries and English technical documents.Comment: 13 pages, 1 Postscript figur

    Japanese/English Cross-Language Information Retrieval: Exploration of Query Translation and Transliteration

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, has of late become one of the major topics within the information retrieval community. This paper proposes a Japanese/English CLIR system, where we combine a query translation and retrieval modules. We currently target the retrieval of technical documents, and therefore the performance of our system is highly dependent on the quality of the translation of technical terms. However, the technical term translation is still problematic in that technical terms are often compound words, and thus new terms are progressively created by combining existing base words. In addition, Japanese often represents loanwords based on its special phonogram. Consequently, existing dictionaries find it difficult to achieve sufficient coverage. To counter the first problem, we produce a Japanese/English dictionary for base words, and translate compound words on a word-by-word basis. We also use a probabilistic method to resolve translation ambiguity. For the second problem, we use a transliteration method, which corresponds words unlisted in the base word dictionary to their phonetic equivalents in the target language. We evaluate our system using a test collection for CLIR, and show that both the compound word translation and transliteration methods improve the system performance

    A Novelty-based Evaluation Method for Information Retrieval

    Full text link
    In information retrieval research, precision and recall have long been used to evaluate IR systems. However, given that a number of retrieval systems resembling one another are already available to the public, it is valuable to retrieve novel relevant documents, i.e., documents that cannot be retrieved by those existing systems. In view of this problem, we propose an evaluation method that favors systems retrieving as many novel documents as possible. We also used our method to evaluate systems that participated in the IREX workshop.Comment: 5 page

    Language Modeling for Multi-Domain Speech-Driven Text Retrieval

    Full text link
    We report experimental results associated with speech-driven text retrieval, which facilitates retrieving information in multiple domains with spoken queries. Since users speak contents related to a target collection, we produce language models used for speech recognition based on the target collection, so as to improve both the recognition and retrieval accuracy. Experiments using existing test collections combined with dictated queries showed the effectiveness of our method
    • …
    corecore