34 research outputs found

    Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger

    Get PDF
    Bradykinin (BK) is produced and acts at the site of injury and inflammation. In the CNS, migration of microglia toward the lesion site plays an important role pathologically. In the present study, we investigated the effect of BK on microglial migration. Increased motility of cultured microglia was mimicked by B1 receptor agonists and markedly inhibited by a B1 antagonist but not by a B2 receptor antagonist. BK induced chemotaxis in microglia isolated from wild-type and B2-knock-out mice but not from B1-knock-out mice. BK-induced motility was not blocked by pertussis toxin but was blocked by chelating intracellular Ca2+ or by low extracellular Ca2+, implying that Ca2+ influx is prerequisite. Blocking the reverse mode of Na+/Ca2+ exchanger (NCX) completely inhibited BK-induced migration. The involvement of NCX was further confirmed by using NCX+/- mice; B1-agonist-induced motility and chemotaxis was decreased compared with that in NCX+/+ mice. Activation of NCX seemed to be dependent on protein kinase C and phosphoinositide 3-kinase, and resultant activation of intermediate-conductance (IK-type) Ca2+-dependent K+ currents (I(K(Ca))) was activated. Despite these effects, BK did not activate microglia, as judged from OX6 staining. Using in vivo lesion models and pharmacological injection to the brain, it was shown that microglial accumulation around the lesion was also dependent on B1 receptors and I(K(Ca)). These observations support the view that BK functions as a chemoattractant by using the distinct signal pathways in the brain and, thus, attracts microglia to the lesion site in vivo

    Impaired Cellular Responses to Cytosolic DNA or Infection with Listeria monocytogenes and Vaccinia Virus in the Absence of the Murine LGP2 Protein

    Get PDF
    Innate immune signaling is crucial for detection of and the initial response to microbial pathogens. Evidence is provided indicating that LGP2, a DEXH box domain protein related to the RNA recognition receptors RIG-I and MDA5, participates in the cellular response to cytosolic double-stranded DNA (dsDNA). Analysis of embryonic fibroblasts and macrophages from mice harboring targeted disruption in the LGP2 gene reveals that LGP2 can act as a positive regulator of type I IFN and anti-microbial gene expression in response to transfected dsDNA. Results indicate that infection of LGP2-deficient mice with an intracellular bacterial pathogen, Listeria monocytogenes, leads to reduced levels of type I IFN and IL12, and allows increased bacterial growth in infected animals, resulting in greater colonization of both spleen and liver. Responses to infection with vaccinia virus, a dsDNA virus, are also suppressed in cells lacking LGP2, reinforcing the ability of LGP2 to act as a positive regulator of antiviral signaling. In vitro mechanistic studies indicate that purified LGP2 protein does not bind DNA but instead mediates these responses indirectly. Data suggest that LGP2 may be acting downstream of the intracellular RNA polymerase III pathway to activate anti-microbial signaling. Together, these findings demonstrate a regulatory role for LGP2 in the response to cytosolic DNA, an intracellular bacterial pathogen, and a DNA virus, and provide a plausible mechanistic hypothesis as the basis for this activity
    corecore