52 research outputs found

    Fluorescence Visualization of Carbon Nanotubes Using Quenching Effect for Nanomanipulation

    Get PDF
    Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 16 - 19, 2007, Bangkok, Thailan

    High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor.

    Get PDF
    The bacterial flagellar motor is a reversible rotary machine that rotates a left-handed helical filament, allowing bacteria to swim toward a more favorable environment. The direction of rotation reverses from counterclockwise (CCW) to clockwise (CW), and vice versa, in response to input from the chemotaxis signaling circuit. CW rotation is normally caused by binding of the phosphorylated response regulator CheY (CheY-P), and strains lacking CheY are typically locked in CCW rotation. The detailed mechanism of switching remains unresolved because it is technically difficult to regulate the level of CheY-P within the concentration range that produces flagellar reversals. Here, we demonstrate that high hydrostatic pressure can induce CW rotation even in the absence of CheY-P. The rotation of single flagellar motors in Escherichia coli cells with the cheY gene deleted was monitored at various pressures and temperatures. Application of >120 MPa pressure induced a reversal from CCW to CW at 20°C, although at that temperature, no motor rotated CW at ambient pressure (0.1 MPa). At lower temperatures, pressure-induced changes in direction were observed at pressures of <120 MPa. CW rotation increased with pressure in a sigmoidal fashion, as it does in response to increasing concentrations of CheY-P. Application of pressure generally promotes the formation of clusters of ordered water molecules on the surfaces of proteins. It is possible that hydration of the switch complex at high pressure induces structural changes similar to those caused by the binding of CheY-P

    Temperature Changes in Brown Adipocytes Detected with a Bimaterial Microcantilever

    Get PDF
    AbstractMammalian cells must produce heat to maintain body temperature and support other biological activities. Methods to measure a cell’s thermogenic ability by inserting a thermometer into the cell or measuring the rate of oxygen consumption in a closed vessel can disturb its natural state. Here, we developed a noninvasive system for measuring a cell’s heat production with a bimaterial microcantilever. This method is suitable for investigating the heat-generating properties of cells in their native state, because changes in cell temperature can be measured from the bending of the microcantilever, without damaging the cell and restricting its supply of dissolved oxygen. Thus, we were able to measure increases in cell temperature of <1 K in a small number of murine brown adipocytes (n = 4–7 cells) stimulated with norepinephrine, and observed a slow increase in temperature over several hours. This long-term heat production suggests that, in addition to converting fatty acids into heat energy, brown adipocytes may also adjust protein expression to raise their own temperature, to generate more heat. We expect this bimaterial microcantilever system to prove useful for determining a cell’s state by measuring thermal characteristics

    Temporal Characteristics of CH4 Vertical Profiles Observed in the West Siberian Lowland Over Surgut From 1993 to 2015 and Novosibirsk From 1997 to 2015

    Get PDF
    We have carried out monthly flask sampling using aircraft, in the altitude range of 0-7 km, over the boreal wetlands in Surgut (61°N, 73°E; since 1993) and a pine forest near Novosibirsk (55°N, 83°E; since 1997), both located in the West Siberian Lowland (WSL). The temporal variation of methane (CH4) concentrations at all altitudes at both sites exhibited an increasing trend with stagnation during 2000-2006 as observed globally from ground-based networks. In addition to a winter maximum as seen at other remote sites in northern middle to high latitudes, another seasonal maximum was also observed in summer, particularly in the lower altitudes over the WSL, which could be attributed to emissions from the wetlands. Our measurements suggest that the vertical gradient at Surgut has been decreasing; the mean CH4 difference between 5.5 km and 1.0 km changed from 64 ± 5 ppb during 1995-1999 to 37 ± 3 ppb during 2009-2013 (mean ± standard error). No clear decline in the CH4 vertical gradient appeared at Novosibirsk. Simulations using an atmospheric chemistry-transport model captured the observed decrease in the vertical CH4 gradient at Surgut when CH4 emissions from Europe decreased but increased from the regions south of Siberia, for example, East and South Asia. At Novosibirsk, the influence of the European emissions was relatively small. Our results also suggest that the regional emissions around the WSL did not change significantly over the period of our observations

    Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002-2012)

    Get PDF
    Methane (CH4) plays important roles in atmospheric chemistry and short-term forcing of climate. A clear understanding of atmospheric CH4’s budget of emissions and losses is required to aid sustainable management of Earth’s future environment. We used an atmospheric chemistry-transport model (JAMSTEC’s ACTM) for simulating atmospheric CH4. A global inverse modeling system has been developed for estimating CH4 emissions from 53 land regions for 2002-2012 using measurements at 39 sites. An ensemble of 7 inversions is performed by varying a priori emissions. Global net CH4 emissions varied between 505-509 and 524-545 Tg yr-1 during 2002-2006 and 2008-2012, respectively (ranges based on 7 inversion cases), with a step like increase in 2007 in agreement with atmospheric measurements. The inversion system did not account for interannual variations in OH radicals reacting with CH4 in the atmosphere. Our results suggest that the recent update of the EDGAR inventory (version 4.2FT2010) overestimated the global total emissions by at least 25 Tg yr-1 in 2010. The increase in CH4 emission since 2004 originated in the tropical and southern hemisphere regions, coinciding with an increase in non-dairy cattle stocks by ~10 % from 2002 (with 1056 million heads) to 2012, leading to ~10 Tg yr-1 increase in emissions from enteric fermentation. All 7 ensemble cases robustly estimated the interannual variations in emissions, but poorly constrained the seasonal cycle amplitude or phase consistently for all regions due to the sparse observational network. Forward simulation results using both a priori and a posteriori emissions are compared with independent aircraft measurements for validation. Based on the results of the comparison, we reject the upper limit (545 Tg yr-1) of global total emissions as 14 Tg yr-1 too high during 2008-2012, which allows us to further conclude that the increase in CH4 emissions over the East Asia (mainly China) region was 7-8 Tg yr-1 between the 2002-2006 and 2008-2012 periods, contrary to 1-17 Tg yr-1 in the a priori emissions

    蛍光相関分光法による単一分子レベルの酵素反応解析

    No full text

    Emissions of nitrous oxide (N2O) from soil surfaces and their historical changes in East Asia: a model-based assessment

    No full text
    Abstract This study assessed historical changes in emissions of nitrous oxide (N2O), a potent greenhouse gas and stratospheric ozone-depleting substance, from the soils of East Asia to the atmosphere. A process-based terrestrial ecosystem model (VISIT) was used to simulate the nitrogen cycle and associated N2O emissions as a function of climate, land use, atmospheric deposition, and agricultural inputs from 1901 to 2016. The mean regional N2O emission rate in the 2000s was estimated to be 2.03 Tg N2O year−1 (1.29 Tg N year−1; approximately one-third from natural ecosystems and two-thirds from croplands), more than triple the rate in 1901. A sensitivity analysis suggested that the increase of N2O emissions was primarily attributable to the increase of agricultural inputs from fertilizer and manure. The simulated N2O emissions showed a clear seasonal cycle and interannual variability, primarily in response to meteorological conditions and nitrogen inputs. The spatial pattern of the simulated N2O emissions revealed hot spots in agricultural areas of China, South Korea, and Japan. The average N2O emission factor (emission per unit nitrogen input) was estimated to be 1.38%, a value comparable to previous estimates. These biogeochemical modeling results will facilitate identifying ways to mitigate global warming and manage agricultural practices in this region

    Hybrid-fuel bacterial flagellar motors in Escherichia coli

    No full text
    The bacterial flagellar motor rotates driven by an electrochemical ion gradient across the cytoplasmic membrane, either H(+) or Na(+) ions. The motor consists of a rotor ∼50 nm in diameter surrounded by multiple torque-generating ion-conducting stator units. Stator units exchange spontaneously between the motor and a pool in the cytoplasmic membrane on a timescale of minutes, and their stability in the motor is dependent upon the ion gradient. We report a genetically engineered hybrid-fuel flagellar motor in Escherichia coli that contains both H(+)- and Na(+)-driven stator components and runs on both types of ion gradient. We controlled the number of each type of stator unit in the motor by protein expression levels and Na(+) concentration ([Na(+)]), using speed changes of single motors driving 1-μm polystyrene beads to determine stator unit numbers. De-energized motors changed from locked to freely rotating on a timescale similar to that of spontaneous stator unit exchange. Hybrid motor speed is simply the sum of speeds attributable to individual stator units of each type. With Na(+) and H(+) stator components expressed at high and medium levels, respectively, Na(+) stator units dominate at high [Na(+)] and are replaced by H(+) units when Na(+) is removed. Thus, competition between stator units for spaces in a motor and sensitivity of each type to its own ion gradient combine to allow hybrid motors to adapt to the prevailing ion gradient. We speculate that a similar process may occur in species that naturally express both H(+) and Na(+) stator components sharing a common rotor
    corecore