11,794 research outputs found

    Time-Dependent Variational Approach to the Non-Abelian Pure Gauge Theory

    Full text link
    The time-dependent variational approach to the pure Yang-Mills gauge theory, especially a color su(3) gauge theory, is formulated in the functional Schroedinger picture with a Gaussian wave functional approximation. The equations of motion for the quantum gauge fields are formulated in the Liouville-von Neumann form. This variational approach is applied in order to derive the transport coefficients, such as the shear viscosity, for the pure gluonic matter by using the linear response theory. As a result, the contribution to the shear viscosity from the quantum gluons is zero up to the lowest order of the coupling g in the quantum gluonic matter.Comment: 19 pages, no figures, using PTPTeX.cl

    Survival of charmonia above Tc in anisotropic lattice QCD

    Full text link
    We find a strong evidence for the survival of J/ΨJ/\Psi and ηc\eta_c as spatially-localized ccˉc\bar c (quasi-)bound states above the QCD critical temperature TcT_c, by investigating the boundary-condition dependence of their energies and spectral functions. In a finite-volume box, there arises a boundary-condition dependence for spatially spread states, while no such dependence appears for spatially compact states. In lattice QCD, we find almost {\it no} spatial boundary-condition dependence for the energy of the ccˉc\bar c system in J/ΨJ/\Psi and ηc\eta_c channels for T(1.112.07)TcT\simeq(1.11-2.07)T_c. We also investigate the spectral function of charmonia above TcT_c in lattice QCD using the maximum entropy method (MEM) in terms of the boundary-condition dependence. There is {\it no} spatial boundary-condition dependence for the low-lying peaks corresponding to J/ΨJ/\Psi and ηc\eta_c around 3GeV at 1.62Tc1.62T_c. These facts indicate the survival of J/ΨJ/\Psi and ηc\eta_c as compact ccˉc\bar c (quasi-)bound states for Tc<T<2TcT_c < T < 2T_c.Comment: 4 pages, 1 figur

    Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics

    Full text link
    The nuclear force acting between protons and neutrons is studied in the Monte Carlo simulations of the fundamental theory of the strong interaction, the quantum chromodynamics defined on the hypercubic space-time lattice. After a brief summary of the empirical nucleon-nucleon (NN) potentials which can fit the NN scattering experiments in high precision, we outline the basic formulation to derive the potential between the extended objects such as the nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key ingredient for defining the NN potential on the lattice. We show the results of the numerical simulations on a 32432^4 lattice with the lattice spacing a0.137a \simeq 0.137 fm (lattice volume (4.4 fm)4^4) in the quenched approximation. The calculation was carried out using the massively parallel computer Blue Gene/L at KEK. We found that the calculated NN potential at low energy has basic features expected from the empirical NN potentials; attraction at long and medium distances and the repulsive core at short distance. Various future directions along this line of research are also summarized.Comment: 13 pages, 4 figures, version accepted for publication in "Computational Science & Discovery" (IOP

    Tetraquark and Pentaquark Systems in Lattice QCD

    Get PDF
    Motivated by the recent experimental discoveries of multi-quark candidates, e.g., the Θ+(1540)\Theta^+(1540), we study multi-quark systems in lattice QCD. First, we perform accurate mass measurements of low-lying 5Q states with J=1/2J=1/2 and I=0 in both positive- and negative-parity channels in anisotropic lattice QCD. The lowest positive-parity 5Q state is found to have a large mass of about 2.24GeV after the chiral extrapolation. To single out the compact 5Q state from NKNK scattering states, we develop a new method with the hybrid-boundary condition (HBC), and find no evidence of the compact 5Q state below 1.75GeV in the negative-parity channel. Second, we perform the first study of the multi-quark potential in lattice QCD to clarify the inter-quark interaction in multi-quark systems. The 5Q potential V5QV_{\rm 5Q} for the QQ-Qˉ{\rm \bar{Q}}-QQ system is found to be well described by the ``OGE Coulomb plus multi-Y Ansatz": the sum of the one-gluon-exchange (OGE) Coulomb term and the multi-Y-type linear term based on the flux-tube picture. The 4Q potential V4QV_{\rm 4Q} for the QQ-QˉQˉ{\rm \bar{Q}\bar{Q}} system is also described by the OGE Coulomb plus multi-Y Ansatz, when QQ and QˉQˉ\rm \bar Q \bar Q are well separated. The 4Q system is described as a "two-meson" state with disconnected flux tubes, when the nearest quark and antiquark pair is spatially close. We observe a lattice-QCD evidence for the ``flip-flop'', i.e., the flux-tube recombination between the connected 4Q state and the ``two-meson'' state. On the confinement mechanism, the lattice QCD results indicate the flux-tube-type linear confinement in multi-quark hadrons.Comment: 22 pages, 3 tables, 16 figures. Talk given at International Workshop on Quark Nuclear Physics 2005 (QNP05), Phoenix Park, Korea, 22-24, Feb., 200

    Nuclear Force from Lattice QCD

    Get PDF
    The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.Comment: A talk given at the XXIV International Symposium on Lattice Field Theory (Lattice2006), Tucson, Arizona, USA, July 23-28, 2006, 3 figures, 7page

    Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet

    Full text link
    Anti-decuplet penta-quark baryon is studied with the quenched anisotropic lattice QCD for accurate measurement of the correlator. Both the positive and negative parity states are studied using a non-NK type interpolating field with I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified with the experimentally observed Theta^+(1540). The lowest negative parity state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the empirical value. To confirm that this state is a compact 5Q resonance, a new method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis shows that the observed state in the negative parity channel is an NK scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004 at SPring-8, Japan, 8 pages, 7 figures, 2 table

    Flat-band excitonic states in Kagome lattice on semiconductor surface

    Full text link
    Excitonic properties in the Kagome lattice system, which is produced by quantum wires on semiconductor surfaces, are investigated by using the exact diagonalization of a tight binding model. It is shown that due to the existence of flat bands the binding energy of exciton becomes remarkably large in the two-dimensional Kagome lattice compared to that in one-dimensional lattice, and the exciton Bohr radius is quite small as large as a lattice constant. We also discuss the magnetic field effects on the exciton binding energy and the stability of exciton against the creation of charged exciton and biexciton.Comment: 5 pages, 5 figure
    corecore