154 research outputs found

    Multistep Engineering of Pyrrolysyl-tRNA Synthetase to Genetically Encode NÉ›-(o-Azidobenzyloxycarbonyl) lysine for Site-Specific Protein Modification

    Get PDF
    SummaryPyrrolysyl-tRNA synthetase (PylRS) esterifies pyrrolysine to tRNAPyl. In this study, Nɛ-(tert-butyloxycarbonyl)-L-lysine (BocLys) and Nɛ-allyloxycarbonyl-L-lysine (AlocLys) were esterified to tRNAPyl by PylRS. Crystal structures of a PylRS catalytic fragment complexed with BocLys and an ATP analog and with AlocLys-AMP revealed that PylRS requires an Nɛ-carbonyl group bearing a substituent with a certain size. A PylRS(Y384F) mutant obtained by random screening exhibited higher in vitro aminoacylation and in vivo amber suppression activities with BocLys, AlocLys, and pyrrolysine than those of the wild-type PylRS. Furthermore, the structure-based Y306A mutation of PylRS drastically increased the in vitro aminoacylation activity for Nɛ-benzyloxycarbonyl-L-lysine (ZLys). A PylRS with both the Y306A and Y384F mutations enabled the large-scale preparation (>10 mg per liter medium) of proteins site-specifically containing Nɛ-(o-azidobenzyloxycarbonyl)-L-lysine (AzZLys). The AzZLys-containing protein was labeled with a fluorescent probe, by Staudinger ligation

    Deep Knot Structure for Construction of Active Site and Cofactor Binding Site of tRNA Modification Enzyme

    Get PDF
    AbstractThe tRNA(Gm18) methyltransferase (TrmH) catalyzes the 2′-O methylation of guanosine 18 (Gua18) of tRNA. We solved the crystal structure of Thermus thermophilus TrmH complexed with S-adenosyl-L-methionine at 1.85 Å resolution. The catalytic domain contains a deep trefoil knot, which mutational analyses revealed to be crucial for the formation of the catalytic site and the cofactor binding pocket. The tRNA dihydrouridine(D)-arm can be docked onto the dimeric TrmH, so that the tRNA D-stem is clamped by the N- and C-terminal helices from one subunit while the Gua18 is modified by the other subunit. Arg41 from the other subunit enters the catalytic site and forms a hydrogen bond with a bound sulfate ion, an RNA main chain phosphate analog, thus activating its nucleophilic state. Based on Gua18 modeling onto the active site, we propose that once Gua18 binds, the phosphate group activates Arg41, which then deprotonates the 2′-OH group for methylation

    The first case of recurrent ultra late onset group B streptococcal sepsis in a 3-year-old child

    Get PDF
    AbstractGroup B streptococcus (GBS) is a commonly recognized cause of sepsis and meningitis in neonatal and young infants. Invasive GBS infection is classified into early onset GBS disease (EOD, day 0–6), late onset GBS disease (LOD, day 7–89) and ultra late onset GBS disease (ULOD, after 3 months of age). ULOD is uncommon and recurrence is especially rare. We present the first recurrent case of ULOD GBS sepsis in 3-year-old girl with a past medical history of hydrops fetalis and thoracic congenital lymphatic dysplasia. The first episode presented as sepsis at 2 years 8 months of age. The second episode occurred as sepsis with encephalopathy at 3 years 1 months of age. During each episode, the patient was treated using intravenous antimicrobials and her condition improved. Serotype examination was not performed in the first episode, but GBS type V was serotyped in the second episode. ULOD over 1year of age is quite rare and may recur

    The Non-Canonical Hydroxylase Structure of YfcM Reveals a Metal Ion-Coordination Motif Required for EF-P Hydroxylation

    Get PDF
    EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any other hydroxylase structures reported so far. The structure of YfcM is similar to that of the ribonuclease YbeY, even though they do not share sequence homology. Furthermore, YfcM has a metal ion-coordinating motif, similar to YbeY. The metal ion-coordinating motif of YfcM resembles a 2-His-1-carboxylate motif, which coordinates an Fe(II) ion and forms the catalytic site of non-heme iron enzymes. Our findings showed that the metal ion-coordinating motif of YfcM plays an essential role in the hydroxylation of the β-lysylated lysine residue of EF-P. Taken together, our results suggested the potential catalytic mechanism of hydroxylation by YfcM

    Clinical utility of the Vesical Imaging-Reporting and Data System for muscle-invasive bladder cancer between radiologists and urologists based on multiparametric MRI including 3D FSE T2-weighted acquisitions

    Get PDF
    Objectives: To investigate the clinical utility of the Vesical Imaging-Reporting and Data System (VI-RADS) by comparing its diagnostic performance for muscle-invasive bladder cancer (MIBC) between radiologists and urologists based on multiparametric MRI, including three-dimensional (3D) fast spin-echo (FSE) T2-weighted acquisitions. Methods: This study included 66 treatment-naïve patients (60 men, 6 women; mean age 74.0 years) with pathologically proven bladder cancer who underwent multiparametric MRI, including 3D FSE T2-weighted imaging, before transurethral bladder tumour resection between January 2010 and November 2018. The MRI scans were categorised according to the five-point VI-RADS score by four independent readers (two board-certified radiologists and board-certified urologists each), blinded to the histopathological findings. The VI-RADS scores were compared with the postoperative histopathological diagnosis. Interobserver agreement was assessed using weighted kappa coefficients. ROC analysis and generalised estimating equations were used to evaluate the diagnostic performance. Results: Forty-nine (74.2%) and 17 (25.8%) tumours were confirmed to be non-MIBC and MIBC, respectively, based on pathological examination. The interobserver agreement was good-to-excellent between all pairs of readers (range, 0.73–0.91). The urologists’ sensitivity/specificity values for DCE-MRI VI-RADS scores were significantly lower than those of radiologists. No significant differences were observed for the overall VI-RADS score. The AUC for the overall VI-RADS score was 0.94, 0.92, 0.89, and 0.87 for radiologists 1 and 2 and urologists 1 and 2, respectively. Conclusions: The VI-RADS score, based on multiparametric MRI including 3D FSE T2-weighted acquisitions, can be useful for radiologists and urologists to determine the bladder cancer muscle invasion status preoperatively. Key Points: • VI-RADS (using multiparametric MRI including 3D FSE T2-weighted acquisitions) achieves good to excellent interobserver agreement and has similar diagnostic performance for detecting muscle invasion by both radiologists and urologists. • The diagnostic performance of the overall VI-RADS score is high for both radiologists and urologists, particularly due to the dominant effect of diffusion-weighted imaging on the overall VI-RADS score. • The sensitivity and specificity values of the T2WI VI-RADS scores for four readers in our study (using 3D FSE T2-weighted acquisitions) were similar (with slightly higher specificity values) to previously published results (using 2D FSE T2-weighted acquisitions)
    • …
    corecore