32 research outputs found

    Biological Function of Low Reactive Level Laser Therapy (LLLT)

    Get PDF
    Low reactive level laser therapy (LLLT) and photobiomodulation are mainly focused on the activation of intracellular or extracellular photoabsorbable molecule (chromophore) and the initiation of cellular signaling using low power lasers and lights. Over the past 40 decades, a number of basic and clinical researches were reported that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term “LLLT” has become widely recognized. In this review, the mechanisms of action of LLLT at a cellular level are described. Finally, our recent research results that LLLT enhanced the cells differentiation are also described

    Optogenetics: Novel Tools for Controlling Mammalian Cell Functions with Light

    Get PDF
    In optogenetics, targeted illumination is used to control the functions of cells expressing exogenous light-activated proteins. Adoption of the optogenetic methods has expanded rapidly in recent years. In this review, we describe the photosensitive channel proteins involved in these methods, describe techniques for their targeting to neurons and other cell types both within and outside the nervous system, and discuss their applications in the field of neuroscience and beyond. We focus especially on the channelrhodopsin protein ChR2, the photosensitive protein most commonly employed in optogenetics. ChR2 has been used by many groups to control neuronal activity, both in vitro and in vivo, on short time scales and with exquisite anatomical precision. In addition, we describe more recently developed tools such as opsin/G protein-coupled receptor chimeric molecules and a light-activated transgene system. In addition, we discuss the potential significance of optogenetics in the development of clinical therapeutics. Although less than a decade old, optogenetics is already responsible for enormous progress in disparate fields, and its future is unquestionably bright

    The properties of bioengineered chondrocyte sheets for cartilage regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the clinical results of autologous chondrocyte implantation for articular cartilage defects have recently improved as a result of advanced techniques based on tissue engineering procedures, problems with cell handling and scaffold imperfections remain to be solved. A new cell-sheet technique has been developed, and is potentially able to overcome these obstacles. Chondrocyte sheets applicable to cartilage regeneration can be prepared with this cell-sheet technique using temperature-responsive culture dishes. However, for clinical application, it is necessary to evaluate the characteristics of the cells in these sheets and to identify their similarities to naive cartilage.</p> <p>Results</p> <p>The expression of SOX 9, collagen type 2, 27, integrin α10, and fibronectin genes in triple-layered chondrocyte sheets was significantly increased in comparison to those in conventional monolayer culture and in a single chondrocyte sheet, implying a nature similar to ordinary cartilage. In addition, immunohistochemistry demonstrated that collagen type II, fibronectin, and integrin α10 were present in the triple-layered chondrocyte sheets.</p> <p>Conclusion</p> <p>The results of this study indicate that these chondrocyte sheets with a consistent cartilaginous phenotype and adhesive properties may lead to a new strategy for cartilage regeneration.</p

    Prospects for Therapeutic Application of Optogenetics

    No full text

    Responses of Cancer Cells Induced by Photodynamic Therapy

    No full text
    Photodynamic therapy (PDT) involves the administration of a photosensitizer, followed by local irradiation of tumor tissues using a laser of an appropriate wavelength to activate the photosensitizer. Since multiple cellular signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic effect, understanding the responses of cancer cells to PDT will aid in the development of new interventions. This review describes the possible cell-death signaling pathways initiated by PDT. In addition, we describe our latest findings regarding the induction of expression of miRNAs specific to apoptosis in cancer cells and the induction of antitumor immunity following PDT against cancer cells. A more detailed understanding of the molecular mechanisms related to PDT will potentially improve long-term survival of PDT treated patients

    Low Reactive Level Laser Therapy for Mesenchymal Stromal Cells Therapies

    No full text
    Low reactive level laser therapy (LLLT) is mainly focused on the activation of intracellular or extracellular chromophore and the initiation of cellular signaling by using low power lasers. Over the past forty years, it was realized that the laser therapy had the potential to improve wound healing and reduce pain and inflammation. In recent years, the term LLLT has become widely recognized in the field of regenerative medicine. In this review, we will describe the mechanisms of action of LLLT at a cellular level and introduce the application to mesenchymal stem cells and mesenchymal stromal cells (MSCs) therapies. Finally, our recent research results that LLLT enhanced the MSCs differentiation to osteoblast will also be described

    Blue Laser Irradiation Decreases the ATP Level in Mouse Skin and Increases the Production of Superoxide Anion and Hypochlorous Acid in Mouse Fibroblasts

    No full text
    Photobiomodulation studies have reported that blue light irradiation induces the production of reactive oxygen species. We investigated the effect of blue laser (405 nm) irradiation on the ATP levels in mouse skin and determined the types of reactive oxygen species and reactive nitrogen species using cultured mouse fibroblasts. Blue laser irradiation caused a decrease in the ATP level in the mouse skin and triggered the generation of superoxide anion and hypochlorous acid, whereas nitric oxide and peroxynitrite were not detected. Moreover, blue laser irradiation resulted in reduced cell viability. It is believed that the decrease in the skin ATP level due to blue light irradiation results from the increased levels of oxidative stress due to the generation of reactive oxygen species. This method of systematically measuring the levels of reactive oxygen species and reactive nitrogen species may be useful for understanding the effects of irradiation conditions

    Human telomerase reverse transcriptase and glucose-regulated protein 78 increase the life span of articular chondrocytes and their repair potential

    No full text
    Abstract Background Like all mammalian cells, normal adult chondrocytes have a limited replicative life span, which decreases with age. To facilitate the therapeutic use of chondrocytes from older donors, a method is needed to prolong their life span. Methods We transfected chondrocytes with hTERT or GRP78 and cultured them in a 3-dimensional atelocollagen honeycomb-shaped scaffold with a membrane seal. Then, we measured the amount of nuclear DNA and glycosaminoglycans (GAGs) and the expression level of type II collagen as markers of cell proliferation and extracellular matrix formation, respectively, in these cultures. In addition, we allografted this tissue-engineered cartilage into osteochondral defects in old rabbits to assess their repair activity in vivo. Results Our results showed different degrees of differentiation in terms of GAG content between chondrocytes from old and young rabbits. Chondrocytes that were cotransfected with hTERT and GRP78 showed higher cellular proliferation and expression of type II collagen than those of nontransfected chondrocytes, regardless of the age of the cartilage donor. In addition, the in vitro growth rates of hTERT- or GRP78-transfected chondrocytes were higher than those of nontransfected chondrocytes, regardless of donor age. In vivo, the tissue-engineered cartilage implants exhibited strong repairing activity, maintained a chondrocyte-specific phenotype, and produced extracellular matrix components. Conclusions Focal gene delivery to aged articular chondrocytes exhibited strong repairing activity and may be therapeutically useful for articular cartilage regeneration.</p
    corecore