15 research outputs found

    Mechanism of decrease of oral bioavailability of cyclosporin a during immunotherapy upon coadministration of amphotericin B

    Get PDF
    金沢大学附属病院薬剤部The trough level of blood concentration of cyclosporin A (CyA) in a patient receiving immunotherapy was observed to decrease following coadministration of amphotericin B (AMB). This clinical observation was confirmed experimentally in Wistar rats intravenously given AMB (1.5 or 3.0 mg/kg) or saline (control) for 4 days, followed by CyA (10 mg/kg). The blood concentration of CyA after i.v. or p.o. administration in both AMB groups was significantly decreased compared with the control. The oral bioavailability of CyA after 1.5 or 3.0 mg/kg AMB treatment was decreased to 67% or 46%, respectively, of that of the control group. AMB treatment increased the expression levels of mdr1a and mdr1b mRNAs in the duodenum to about three times the control, and expression of CYP3A2 mRNA in the liver was increased to about twice the control. The P-gp and CYP3A2 proteins were increased significantly. These findings suggest that the oral bioavailability of CyA is reduced as a result of both increased efflux transport via P-glycoprotein in the duodenum and an increased first-pass effect of CYP3A2-mediated hepatic metabolic activity, induced by AMB. It is suggested that careful monitoring of CyA levels is necessary in the event of AMB administration to patients receiving immunotherapy with CyA. Copyright © 2008 John Wiley & Sons, Ltd

    Aberrant Glycogen Synthase Kinase 3β Is Involved in Pancreatic Cancer Cell Invasion and Resistance to Therapy

    Get PDF
    Background and Purpose: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. Methods: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. Results: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. Conclusion: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer. © 2013 Kitano et al

    Prediction of intravesical recurrence of non-muscle-invasive bladder cancer by evaluation of intratumoral Foxp3+ T cells in the primary transurethral resection of bladder tumor specimens.

    No full text
    Patients with a history of non-muscle-invasive bladder cancer sometimes have recurrence of tumors after transurethral resection of bladder tumor treatment. To find factors related to the recurrence of non-muscle-invasive bladder cancer, we examined tissue specimens taken at transurethral resection of bladder tumor as an initial treatment. We revealed the association between prognosis of non-muscle-invasive bladder cancer and infiltration of Foxp3+ T cells that suppress anti-tumor immunity in 115 primary non-muscle-invasive bladder cancer patients retrospectively identified and followed for at least 3 months after primary transurethral resection. In immunohistological staining, we counted the number of cells positive for CD3 and positive for CD3 and Foxp3 together and calculated the percentage of Foxp3+ T cells among the CD3+ T cells. The recurrence-free survival rate was calculated by the Kaplan-Meier method, and a Cox regression analysis of recurrence factors was performed. The median (interquartile range) percentage of Foxp3+ T cells in all cases was 17.1% (11.9, 11.4-23.3%). Compared by risk stratification, it was 11.4% (10.4, 7.8-18.2%) in the low-risk group (n = 32), 16.8% (12.6, 11.6-24.2%) in the intermediate-risk group (n = 45), and 22.0% (9.7, 16.4-26.1%) in the high-risk group (n = 38). The Kaplan-Meier survival analysis indicated that the Foxp3+ T cell high group (≥ 17.1%) had a worse RFS rate than did the low group (< 17.1%) (P = 0.006). In multivariate analysis, the percentage of Foxp3+ T cells was an independent risk factor for intravesical recurrence (hazard ratio 2.25). Thus, peritumoral Foxp3+ T cell infiltration was correlated to risk stratification and recurrence-free survival. Therefore, the percentage of Foxp3+ T cells in tumor specimens may predict a risk for intravesical recurrence

    Aberrant glycogen synthase kinase 3β is involved in pancreatic cancer cell invasion and resistance to therapy.

    Get PDF
    BACKGROUND AND PURPOSE: The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer. METHODS: Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined. RESULTS: Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts. CONCLUSION: The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer
    corecore