44 research outputs found

    Protective Actions of 17 β

    Get PDF
    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury

    Dual Role of Superoxide Dismutase 2 Induced in Activated Microglia: OXIDATIVE STRESS TOLERANCE AND CONVERGENCE OF INFLAMMATORY RESPONSES

    Get PDF
    Microglia are activated quickly in response to external pathogens or cell debris and clear these substances via the inflammatory response. However, excessive activation of microglia can be harmful to host cells due to the increased production of reactive oxygen species and proinflammatory cytokines. Superoxide dismutase 2 (SOD2) is reportedly induced under various inflammatory conditions in the central nervous system. We herein demonstrated that activated microglia strongly express SOD2 and examined the role of SOD2, focusing on regulation of the microglial activity and the susceptibility of microglia to oxidative stress. When rat primary microglia were treated with LPS, poly(I:C), peptidoglycan, or CpG oligodeoxynucleotide, respectively, the mRNA and protein levels of SOD2 largely increased. However, an increased expression of SOD2 was not detected in the primary neurons or astrocytes, indicating that SOD2 is specifically induced in microglia under inflammatory conditions. The activated microglia showed high tolerance to oxidative stress, whereas SOD2 knockdown conferred vulnerability to oxidative stress. Interestingly, the production of proinflammatory cytokines was increased in the activated microglia treated with SOD2 siRNA compared with that observed in the control siRNA-treated cells. Pretreatment with NADPH oxidase inhibitors, diphenylene iodonium and apocynin, decreased in not only reactive oxygen species generation but also the proinflammatory cytokine expression. Notably, SOD2 knockdown largely potentiated the nuclear factor κB activity in the activated microglia. Taken together, increased SOD2 conferred tolerance to oxidative stress in the microglia and decreased proinflammatory cytokine production by attenuating the nuclear factor κB activity. Therefore, SOD2 might regulate neuroinflammation by controlling the microglial activities.This work was supported in part by KAKENHI Grants 26740024, 30291149, and 22310041 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to Y. I., K. I., and T. Y.); a grant from the Fujii Foundation (to Y. I.); and a grant from the Hiroshima University Education and Research Support Foundation (to Y. I.)

    An Active C-Terminally Truncated Form of Ca2+/Calmodulin-Dependent Protein Kinase Phosphatase-N (CaMKP-N/PPM1E)

    Get PDF
    Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and its nuclear homolog CaMKP-N (PPM1E) are Ser/Thr protein phosphatases that belong to the PPM family. CaMKP-N is expressed in the brain and undergoes proteolytic processing to yield a C-terminally truncated form. The physiological significance of this processing, however, is not fully understood. Using a wheat-embryo cell-free protein expression system, we prepared human CaMKP-N (hCaMKP-N(WT)) and the truncated form, hCaMKP-N(1–559), to compare their enzymatic properties using a phosphopeptide substrate. The hCaMKP-N(1–559) exhibited a much higher value than the hCaMKP-N(WT) did, suggesting that the processing may be a regulatory mechanism to generate a more active species. The active form, hCaMKP-N(1–559), showed Mn2+ or Mg2+-dependent phosphatase activity with a strong preference for phospho-Thr residues and was severely inhibited by NaF, but not by okadaic acid, calyculin A, or 1-amino-8-naphthol-2,4-disulfonic acid, a specific inhibitor of CaMKP. It could bind to postsynaptic density and dephosphorylate the autophosphorylated Ca2+/calmodulin-dependent protein kinase II. Furthermore, it was inactivated by H2O2 treatment, and the inactivation was completely reversed by treatment with DTT, implying that this process is reversibly regulated by oxidation/reduction. The truncated CaMKP-N may play an important physiological role in neuronal cells.This work was supported, in part, by Grants-in-Aid for Scientific Research (21590334) from the Ministry of Education, Science, Sports, and Culture of Japan and by a grant from the Japan Foundation for Applied Enzymology

    Protein phosphatases that regulate multifunctional Ca2+/calmodulin-dependent protein kinases: from biochemistry to pharmacology

    Get PDF
    Pergamon Press, Ishida, Atsuhiko ; Shigeri, Yasushi ; Taniguchi, Takanobu ; Kameshita, Isamu, Pharmacology and Therapeutics, 100(3), 2003, 291-305. authorMultifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in Ca(2+) signaling pathways, such as the regulation of the neuronal functions of learning, memory, and neuronal cell death. The activities of the kinases are strictly regulated by protein phosphorylation/dephosphorylation. Although the activation mechanisms for multifunctional CaMKs through phosphorylation, which correspond to "switch on," have been extensively studied, the negative regulatory mechanisms through dephosphorylation, which correspond to "switch off," have not. In this review, we focused on the regulation of multifunctional CaMKs by the protein phosphatases responsible. We first summarized the current understanding of negative regulation of CaMKs by known protein phosphatases and their physiological significance. We then discussed newly developed methods for detection of protein phosphatases involved in the regulation of CaMKs. We also summarized the biochemical properties of a novel protein phosphatase, which we isolated with the new methods and designated as CaMK phosphatase (CaMKP), and its homologue. Pharmacological implications for neuronal functions including memory and neuronal cell death are discussed from the viewpoint that regulation of protein kinase activity can be elucidated by focusing on protein phosphatases involved in its "switch off" mechanism

    Phosphorylation of calmodulin by Ca2+/calmodulin-dependent protein kinase IV

    Get PDF
    Elsevier, Ishida, A. ; Kameshita, I. ; Okuno, S. ; Kitani, T. ; Fujisawa, H., ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 407(1), 2002, 72-82 authorCalmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly--Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase α, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 μM CaM was about 10 μg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly--Arg could partially substitute for poly(Lys), but protamine, spermine, and poly--Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The ^P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr^. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca^/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM

    Stimulation of Ca^<2+>/calmodulin-dependent protein kinase phosphatase by polycations

    Get PDF
    Elsevier, Ishida, A. ; Kameshita, I. ; Kitani, T. ; Okuno, S. ; Takeuchi, M. ; Fujisawa, H., ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 408(2), 2002, 229-238Ca^/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca^/calmodulin-dependent protein kinases (CaMKs). One of the prominent features of CaMKPase is stimulation of phosphatase activity by polycations such as poly--lysine (poly(Lys)). Using various polycations, basicity and molecular weight of the polymer proved to be important for the stimulation. Surface plasmon resonance (SPR) analysis showed that CaMKIV(T196D), which mimics CaMKPase substrate, and CaMKPase could form tight complexes with poly(Lys). Pull-down binding experiments suggested that the formation of a tightly associated ternary complex consisting of CaMKPase, poly(Lys), and phosphorylated CaMKIV is essential for stimulation. Dilution experiments also supported this contention. Poly(Lys) failed to stimulate a CaMKPase mutant in which a Glu cluster corresponding to residues 101–109 in the N-terminal domain was deleted, and the mutant could not interact with poly(Lys) in the presence of Mn^. Thus, the Glu cluster appeared to be the binding site for polycations and to play a pivotal role in the polycation stimulation of CaMKPase activity

    Generation of a polyclonal antibody that simultaneously detects multiple Ser/Thr protein kinases

    Get PDF
    Elsevier, Isamu Kameshita, Shun Kinoshita, Yasushi Shigeri, Yoshiro Tatsu, Noboru Yumoto, Atsuhiko Ishida, JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, 60(1), 2004, 13-22 authorIn order to obtain a polyclonal antibody that recognizes various protein kinases, a peptide corresponding to an amino acid sequence of a highly conserved subdomain (subdomain VIB) of the protein kinase family was synthesized and used for immunization. When the synthetic peptide, CVVHRDLKPENLLLAS, was coupled to keyhole limpet hemocyanin (KLH) and used to immunize rabbits, polyclonal antibodies that detected multiple protein kinases on a Western blot were generated. One of the antibodies obtained, KI98, detected a variety of purified Ser/Thr protein kinases, such as calmodulin-dependent protein kinase II (CaM-kinase II), calmodulin-dependent protein kinase IV (CaM-kinase IV), cAMP-dependent protein kinase, protein kinase C, and Erk2. The antibody detected as low as 0.2 ng of protein kinases blotted onto a nitrocellulose membrane by dot-immunobinding assay. When a rat brain extract was analyzed with this antibody, various protein kinases were simultaneously detected. The present anti-peptide antibody with a broad spectrum of cross-reactivity to multiple protein kinases may be a powerful tool for comprehensive analysis focused on protein kinases

    Inhibitors of the Ca^<2+>/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N)

    Get PDF
    authorCa^/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca^/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro
    corecore