23 research outputs found

    Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In <it>Salmonella enterica </it>serovar Typhimurium (<it>S</it>. Typhimurium), several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in <it>S</it>. Typhimurium, agarose 2-dimensional electrophoresis (2-DE) combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved <it>S</it>. Typhimurium strain SH100, a derivative of ATCC 14028, was established.</p> <p>Results</p> <p>Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp<sup>0 </sup>mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and <it>Salmonella</it>-specific proteins. In addition, <it>Salmonella </it>strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of <it>stm3169 </it>was controlled by ppGpp and SsrB, a response regulator of the two-component system located on <it>Salmonella </it>pathogenicity island 2.</p> <p>Conclusions</p> <p>A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in <it>Salmonella </it>pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in <it>S. enterica</it>.</p

    Large edge magnetism in oxidized few-layer black phosphorus nanomeshes

    Get PDF
    The formation and control of a room-temperature magnetic order in two-dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are ~100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements

    Near-Infrared Imaging Polarimetry of Inner Region of GG Tau A Disk

    Full text link
    By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the HH band with a spatial resolution of approximately 0.07\arcsec, revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab and part of a circumstellar structure that is noticeable around GG Tau Aa extending to a distance of approximately 28 AU from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to <13 AU. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semi-major axis of the binary's orbit is likely to be 62 AU. A comparison of the present observations with previous ALMA and near-infrared (NIR) H2_2 emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation \lesssim 100 AU) young binary systems.Comment: Accepted for publication in AJ, 12 pages, 5 figure

    Clinical outcomes for olfactory neuroblastoma

    Get PDF
    BackgroundOlfactory neuroblastoma (ONB) is a rare malignant tumor arising from the olfactory neuroepithelium. The standard of care for ONB is surgical resection; however, detailed treatment protocols vary by institution. Our treatment protocol consists of endoscopic skull base surgery (ESBS) for endoscopically resectable cases and induction chemotherapy followed by craniotomy combined with ESBS for locally advanced cases, with postoperative radiotherapy performed for all cases. Chemoradiotherapy (CRT) is performed in unresectable cases. In this study, we evaluate our treatment protocol and outcomes for ONB.MethodsA retrospective review of patients with ONB was conducted. Outcomes included survival outcomes and perioperative data.ResultsFifteen patients (53.6%) underwent ESBS, 12 (42.9%) underwent craniotomy combined with ESBS, and 1 (3.6%) received CRT. The 5- and 10-year overall survival rates for all patients were 92.9% and 82.5%, respectively, with a median follow-up period of 81 months. The 5- and 10-year disease-free survival rates were 77.3% and 70.3%, respectively, and the 5- and 10-year local control rates were 88.2% and 80.2%, respectively. Patients undergoing ESBS demonstrated a significantly shorter operating time, period from operation to ambulation, hospitalization period, and less blood loss than those undergoing craniotomy combined with ESBS.ConclusionOur treatment protocol was found to afford favorable outcomes. Patients who underwent endoscopic resection showed lower complication rates and better perioperative data than those who underwent craniotomy combined with ESBS. With appropriate case selection, ESBS is considered a useful approach for ONB

    Analysis of induced pluripotent stem cell clones derived from a patient with mosaic neurofibromatosis type 2

    Full text link
    The diagnosis of mosaicism is challenging in patients with neurofibromatosis type 2 (NF2) subset due to low variant allele frequency. In this study, we generated induced pluripotent stem cells (iPSCs) were generated from a patient clinically diagnosed with NF2 based on multiple schwannomas, including bilateral vestibular schwannomas and meningiomas. Genetic analysis of the patient's mononuclear cells (MNCs) from peripheral blood failed to detect NF2 alteration but successfully found p.Q65X (c.193C>T) mutation in all separate tumors with three intracranial meningiomas and one intraorbital schwannoma, and confirming mosaicism diagnosis in NF2 alteration using deep sequencing. Five different clones with patient-derived iPSCs were established from MNCs in peripheral blood, which showed sufficient expression of pluripotent markers. Genetic analysis showed that one of five generated iPSC lines from MNCs had the same p.Q65X mutation as that found in NF2. There was no significant difference in the expression of genes related to NF2 between iPSC clones with the wild-type and mutant NF2. In this case, clonal expansion of mononuclear bone marrow-derived stem cells recapitulated mosaicism's genetic alteration in NF2. Patient-derived iPSCs from mosaic NF2 would contribute to further functional research of NF2 alteration

    Large edge magnetism in oxidized few-layer black phosphorus nanomeshes

    Full text link
    The formation and control of a room-temperature magnetic order in two-dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are ~100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements

    Cystic Intracranial Recurrence of Olfactory Neuroblastoma without Accumulation on Fluorine-18-fluorodeoxyglucose Positron Emission Tomography

    Full text link
    A 66-year-old man underwent multimodal treatment for olfactory neuroblastoma (ONB). When he was 72 years old, a cystic intracranial lesion without accumulation on fluorine-18-fluorodeoxyglucose positron emission tomography was detected. Surgical resection was performed when the patient was 73 years old. The pathological examination revealed recurrence of ONB, and the patient underwent focal irradiation. At age 81, he presented with a second recurrence in the right occipital lobe with radiological and pathological findings similar to the prior recurrence. This case suggests that pathological confirmation should be considered in cases with atypical radiological findings following the treatment of ONB

    Clinical and radiological findings of glioblastomas harboring a BRAF V600E mutation

    Full text link
    The aim of this study was to analyze the clinical and radiological characteristics of glioblastomas (GBMs) harboring a BRAF mutation. Sequencing analysis of BRAF, IDH1/2, and TERT promoters was performed on GBM samples of patients older than 15 years. The clinical, pathological, and radiological data of patients were retrospectively reviewed. Patients were classified into three groups according to their BRAF and IDH1/2 status: BRAF group, IDH group, and BRAF/IDH-wild-type (WT) group. Among 179 GBM cases, we identified nine cases with a BRAF mutation and nine with IDH mutation. The WT group had 161 cases. Age at onset in the BRAF group was significantly lower compared to the WT group and was similar to the IDH group. In cases with negative IDH1-R132H staining and age < 55 years, 15.2% were BRAF-mutant cases. Similar to the IDH group, overall survival of the BRAF group was significantly longer compared with the WT group. Among nine cases in the BRAF group, three cases had hemorrhagic onset and prior lesions were observed in two cases. In conclusion, age < 55 years, being IDH1-R132H negative, with hemorrhagic onset or the presence of prior lesions are factors that signal recommendation of BRAF analysis for adult GBM patients
    corecore