19 research outputs found

    Nest Making and Oxytocin Comparably Promote Wound Healing in Isolation Reared Rats

    Get PDF
    Background: Environmental enrichment (EE) fosters attachment behavior through its effect on brain oxytocin levels in the hippocampus and other brain regions, which in turn modulate the hypothalamic-pituitary axis (HPA). Social isolation and other stressors negatively impact physical healing through their effect on the HPA. Therefore, we reasoned that: 1) provision of a rat EE (nest building with Nestlets®) would improve wound healing in rats undergoing stress due to isolation rearing and 2) that oxytocin would have a similar beneficial effect on wound healing. Methodology/Principal Findings: In the first two experiments, we provided isolation reared rats with either EE or oxytocin and compared their wound healing to group reared rats and isolation reared rats that did not receive Nestlets or oxytocin. In the third experiment, we examined the effect of Nestlets on open field locomotion and immediate early gene (IEG) expression. We found that isolation reared rats treated with Nestlets a) healed significantly better than without Nestlets, 2) healed at a similar rate to rats treated with oxytocin, 3) had decreased hyperactivity in the open field test, and 4) had normalized IEG expression in brain hippocampus. Conclusions/Significance: This study shows that when an EE strategy or oxytocin is given to isolation reared rats, the peripheral stress response, as measured by burn injury healing, is decreased. The findings indicate an association between the effect of nest making on wound healing and administration of the pro-bonding hormone oxytocin. Further elucidation of this animal model should lead to improved understanding of how EE strategies can ameliorate poor wound healing and other symptoms that result from isolation stress

    Role of Hydrogen Sulfide in Severe Burn Injury–Induced Inflammation in Mice

    No full text
    Endogenous hydrogen sulfide (H2S) is naturally synthesized in many types of mammalian cells from L-cysteine in the reactions catalyzed by cystathionine-β-synthase and cystathionine-γ-lyase (CSE). H2S has been demonstrated to play a proinflammatory role in various animal models of hindpaw edema, acute pancreatitis, lipopolysaccharide-induced endotoxemia and cecal ligation, and puncture–induced sepsis. Full-thickness burns that exceed 25% of the total body surface area (TBSA) produce a profound systemic inflammatory reaction characterized by leukocyte activation and plasma leakage in the microvasculature of tissues and organs remote from the wound. The aim of this study was to investigate the effect of local burn injury on induced distant organ endogenous H2S release and expression of CSE. Male BALB/c mice were subjected to 30% TBSA full-thickness burn and treated with saline (administered intraperitoneally [i.p.]); DL-propargylglycine (PAG, 50 mg/kg i.p.), which is a CSE inhibitor; or sodium hydrosulfide (NaHS, 10 mg/kg i.p.), which is an H2S donor. PAG was administered either 1 h before or 1 h after the burn injury, whereas NaHS was given at the same time as the burn injury. Measurements of liver myeloperoxidase (MPO) activities, liver H2S-synthesizing activity, plasma H2S level and liver and lung CSE mRNA expression and histological examination of tissues were performed after burn injury. Burn injury significantly increased the plasma H2S level and liver H2S synthesis 8 h after burn compared with the sham group. Burn injury also resulted in a significant upregulation of CSE mRNA in liver and lung. Prophylactic as well as therapeutic administration of PAG significantly reduced burn-associated systemic inflammation, as evidenced by MPO activity and histological changes in liver and lung. Injection of NaHS significantly aggravated burn-associated systemic inflammation. Therefore, our findings show for the first time the role of H2S in contributing to inflammatory damage after burn injury
    corecore