28 research outputs found

    An Indo-Pacific coral spawning database.

    Full text link
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    Cambios estructurales de la demanda de trabajo en Colombia

    No full text
    This paper exposes an analysis of the structural changes experienced by the demand of waged workers in Colombia during the 1990’s due to both, structural adjustment policies and the economic crisis that arose since 1998. The cointegration vectors’ methodology is deployed in order to obtain long-run demand elasticities with respect to changes in product and wages. The authors found evidence towards the hypothesis according to which labor demand became less elastic in relation to product variations, particularly, among less-skilled workers.Colombia, labor demand

    Multidrug-Resistant Tuberculosis in Panama Is Driven by Clonal Expansion of a Multidrug-Resistant Mycobacterium tuberculosis Strain Related to the KZN Extensively Drug-Resistant M. tuberculosis Strain from South Africa

    No full text
    Multidrug-resistant tuberculosis (MDR-TB) is a significant health problem in Panama. The extent to which such cases are the result of primary or acquired resistance and the strain families involved are unknown. We performed whole-genome sequencing of a collection of 66 clinical MDR isolates, along with 31 drug-susceptible isolates, that were isolated in Panama between 2001 and 2010; 78% of the MDR isolates belong to the Latin American-Mediterranean (LAM) family. Drug resistance mutations correlated well with drug susceptibility profiles. To determine the relationships among these strains and to better understand the acquisition of resistance mutations, a phylogenetic tree was constructed based on a genome-wide single-nucleotide polymorphism analysis. The phylogenetic tree shows that the isolates are highly clustered, with a single strain (LAM9-c1) accounting for nearly one-half of the MDR isolates (29/66 isolates). The LAM9-c1 strain was most prevalent among male patients of working age and was associated with high mortality rates. Members of this cluster all share identical mutations conferring resistance to isoniazid (KatG S315T mutation), rifampin (RpoB S531L mutation), and streptomycin (rrs C517T mutation). This evidence of primary resistance supports a model in which MDR-TB in Panama is driven by clonal expansion and ongoing transmission of several strains in the LAM family, including the highly successful MDR strain LAM9-c1. The phylogenetic analysis also shows that the LAM9-c1 strain is closely related to the KwaZulu-Natal (KZN) extensively drug-resistant TB strain identified in KwaZulu-Natal, South Africa. The LAM9-c1 and KZN strains likely arose from a recent common ancestor that was transmitted between Panama and South Africa and had the capacity to tolerate an accumulation of multiple resistance mutations
    corecore