982 research outputs found

    Quantum decoherence and classical correlations of the harmonic oscillator in the Lindblad theory

    Full text link
    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence and classical correlations of a harmonic oscillator interacting with a thermal bath. The transition from quantum to classical behaviour of the considered system is analyzed and it is shown that the classicality takes place during a finite interval of time. We calculate also the decoherence time and show that it has the same scale as the time after which statistical fluctuations become comparable with quantum fluctuations.Comment: 24 pages, 8 figure

    Towards "dynamic domains": totally continuous cocomplete Q-categories

    Get PDF
    It is common practice in both theoretical computer science and theoretical physics to describe the (static) logic of a system by means of a complete lattice. When formalizing the dynamics of such a system, the updates of that system organize themselves quite naturally in a quantale, or more generally, a quantaloid. In fact, we are lead to consider cocomplete quantaloid-enriched categories as fundamental mathematical structure for a dynamic logic common to both computer science and physics. Here we explain the theory of totally continuous cocomplete categories as generalization of the well-known theory of totally continuous suplattices. That is to say, we undertake some first steps towards a theory of "dynamic domains''.Comment: 29 pages; contains a more elaborate introduction, corrects some typos, and has a sexier title than the previously posted version, but the mathematics are essentially the sam

    Asymptotic entanglement in open quantum systems

    Full text link
    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we solve in the asymptotic long-time regime the master equation for two independent harmonic oscillators interacting with an environment. We give a description of the continuous-variable asymptotic entanglement in terms of the covariance matrix of the considered subsystem for an arbitrary Gaussian input state. Using Peres--Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that for certain classes of environments the initial state evolves asymptotically to an entangled equilibrium bipartite state, while for other values of the coefficients describing the environment, the asymptotic state is separable. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.Comment: 7 pages, 1 figure; contribution given at the Workshop "Noise, Information and Complexity @ Quantum Scale" (nic@qs07), Erice, Italy (2007
    • …
    corecore