9 research outputs found

    Administration of Harmine and Imipramine Alters Creatine Kinase and Mitochondrial Respiratory Chain Activities in the Rat Brain

    Get PDF
    The present study evaluated mitochondrial respiratory chain and creatine kinase activities after administration of harmine (5, 10, and 15 mg/kg) and imipramine (10, 20, and 30 mg/kg) in rat brain. After acute treatment occurred an increase of creatine kinase in the prefrontal with imipramine (20 and 30 mg/kg) and harmine in all doses, in the striatum with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg); harmine (15 mg/kg) decreased creatine kinase. In the chronic treatment occurred an increase of creatine kinase with imipramine (20 mg/kg), harmine (5 mg/kg) in the prefrontal with imipramine (20 and 30 mg/kg) and harmine (5 and 10 mg/kg) in the striatum. In the acute treatment, the complex I increased in the prefrontal with harmine (15 mg/kg) and in the striatum with harmine (10 mg/kg); the complex II decreased with imipramine (20 and 30 mg/kg) in the striatum; the complex IV increased with imipramine (30 mg/kg) in the striatum. In the chronic treatment, the complex I increased with harmine (5 mg/kg) in the prefrontal; the complex II increased with imipramine (20 mg/kg) in the prefrontal; the complex IV increased with harmine (5 mg/kg) in the striatum. Finally, these findings further support the hypothesis that harmine and imipramine could be involved in mitochondrial function

    Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Get PDF
    Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent

    Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    No full text
    Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent
    corecore